cvrf2cusa/cvrf/2024/cvrf-openEuler-SA-2024-1622.xml
Jia Chao 0b34274085 git mv
Signed-off-by: Jia Chao <jiac13@chinaunicom.cn>
2024-07-25 09:57:37 +08:00

7689 lines
323 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<cvrfdoc xmlns="http://www.icasi.org/CVRF/schema/cvrf/1.1" xmlns:cvrf="http://www.icasi.org/CVRF/schema/cvrf/1.1">
<DocumentTitle xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP3</DocumentTitle>
<DocumentType>Security Advisory</DocumentType>
<DocumentPublisher Type="Vendor">
<ContactDetails>openeuler-security@openeuler.org</ContactDetails>
<IssuingAuthority>openEuler security committee</IssuingAuthority>
</DocumentPublisher>
<DocumentTracking>
<Identification>
<ID>openEuler-SA-2024-1622</ID>
</Identification>
<Status>Final</Status>
<Version>1.0</Version>
<RevisionHistory>
<Revision>
<Number>1.0</Number>
<Date>2024-05-17</Date>
<Description>Initial</Description>
</Revision>
</RevisionHistory>
<InitialReleaseDate>2024-05-17</InitialReleaseDate>
<CurrentReleaseDate>2024-05-17</CurrentReleaseDate>
<Generator>
<Engine>openEuler SA Tool V1.0</Engine>
<Date>2024-05-17</Date>
</Generator>
</DocumentTracking>
<DocumentNotes>
<Note Title="Synopsis" Type="General" Ordinal="1" xml:lang="en">kernel security update</Note>
<Note Title="Summary" Type="General" Ordinal="2" xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP3.</Note>
<Note Title="Description" Type="General" Ordinal="3" xml:lang="en">The Linux Kernel, the operating system core itself.
Security Fix(es):
In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Harden accesses to the reset domains
Accessing reset domains descriptors by the index upon the SCMI drivers
requests through the SCMI reset operations interface can potentially
lead to out-of-bound violations if the SCMI driver misbehave.
Add an internal consistency check before any such domains descriptors
accesses.(CVE-2022-48655)
In the Linux kernel, the following vulnerability has been resolved:
erofs: fix pcluster use-after-free on UP platforms
During stress testing with CONFIG_SMP disabled, KASAN reports as below:
==================================================================
BUG: KASAN: use-after-free in __mutex_lock+0xe5/0xc30
Read of size 8 at addr ffff8881094223f8 by task stress/7789
CPU: 0 PID: 7789 Comm: stress Not tainted 6.0.0-rc1-00002-g0d53d2e882f9 #3
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
Call Trace:
&lt;TASK&gt;
..
__mutex_lock+0xe5/0xc30
..
z_erofs_do_read_page+0x8ce/0x1560
..
z_erofs_readahead+0x31c/0x580
..
Freed by task 7787
kasan_save_stack+0x1e/0x40
kasan_set_track+0x20/0x30
kasan_set_free_info+0x20/0x40
__kasan_slab_free+0x10c/0x190
kmem_cache_free+0xed/0x380
rcu_core+0x3d5/0xc90
__do_softirq+0x12d/0x389
Last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0x97/0xb0
call_rcu+0x3d/0x3f0
erofs_shrink_workstation+0x11f/0x210
erofs_shrink_scan+0xdc/0x170
shrink_slab.constprop.0+0x296/0x530
drop_slab+0x1c/0x70
drop_caches_sysctl_handler+0x70/0x80
proc_sys_call_handler+0x20a/0x2f0
vfs_write+0x555/0x6c0
ksys_write+0xbe/0x160
do_syscall_64+0x3b/0x90
The root cause is that erofs_workgroup_unfreeze() doesn&apos;t reset to
orig_val thus it causes a race that the pcluster reuses unexpectedly
before freeing.
Since UP platforms are quite rare now, such path becomes unnecessary.
Let&apos;s drop such specific-designed path directly instead.(CVE-2022-48674)
In the Linux kernel, the following vulnerability has been resolved:
usb: hub: Guard against accesses to uninitialized BOS descriptors
Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h
access fields inside udev-&gt;bos without checking if it was allocated and
initialized. If usb_get_bos_descriptor() fails for whatever
reason, udev-&gt;bos will be NULL and those accesses will result in a
crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 &lt;HASH:1f9e 1&gt;
Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:hub_port_reset+0x193/0x788
Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 &lt;48&gt; 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9
RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310
RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840
RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0
Call Trace:
hub_event+0x73f/0x156e
? hub_activate+0x5b7/0x68f
process_one_work+0x1a2/0x487
worker_thread+0x11a/0x288
kthread+0x13a/0x152
? process_one_work+0x487/0x487
? kthread_associate_blkcg+0x70/0x70
ret_from_fork+0x1f/0x30
Fall back to a default behavior if the BOS descriptor isn&apos;t accessible
and skip all the functionalities that depend on it: LPM support checks,
Super Speed capabilitiy checks, U1/U2 states setup.(CVE-2023-52477)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow timeout for anonymous sets
Never used from userspace, disallow these parameters.(CVE-2023-52620)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: exthdr: fix 4-byte stack OOB write
If priv-&gt;len is a multiple of 4, then dst[len / 4] can write past
the destination array which leads to stack corruption.
This construct is necessary to clean the remainder of the register
in case -&gt;len is NOT a multiple of the register size, so make it
conditional just like nft_payload.c does.
The bug was added in 4.1 cycle and then copied/inherited when
tcp/sctp and ip option support was added.
Bug reported by Zero Day Initiative project (ZDI-CAN-21950,
ZDI-CAN-21951, ZDI-CAN-21961).(CVE-2023-52628)
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix an NULL dereference bug
The issue here is when this is called from ntfs_load_attr_list(). The
&quot;size&quot; comes from le32_to_cpu(attr-&gt;res.data_size) so it can&apos;t overflow
on a 64bit systems but on 32bit systems the &quot;+ 1023&quot; can overflow and
the result is zero. This means that the kmalloc will succeed by
returning the ZERO_SIZE_PTR and then the memcpy() will crash with an
Oops on the next line.(CVE-2023-52631)
In the Linux kernel, the following vulnerability has been resolved:
um: time-travel: fix time corruption
In &apos;basic&apos; time-travel mode (without =inf-cpu or =ext), we
still get timer interrupts. These can happen at arbitrary
points in time, i.e. while in timer_read(), which pushes
time forward just a little bit. Then, if we happen to get
the interrupt after calculating the new time to push to,
but before actually finishing that, the interrupt will set
the time to a value that&apos;s incompatible with the forward,
and we&apos;ll crash because time goes backwards when we do the
forwarding.
Fix this by reading the time_travel_time, calculating the
adjustment, and doing the adjustment all with interrupts
disabled.(CVE-2023-52633)
In the Linux kernel, the following vulnerability has been resolved:
can: j1939: Fix UAF in j1939_sk_match_filter during setsockopt(SO_J1939_FILTER)
Lock jsk-&gt;sk to prevent UAF when setsockopt(..., SO_J1939_FILTER, ...)
modifies jsk-&gt;filters while receiving packets.
Following trace was seen on affected system:
==================================================================
BUG: KASAN: slab-use-after-free in j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
Read of size 4 at addr ffff888012144014 by task j1939/350
CPU: 0 PID: 350 Comm: j1939 Tainted: G W OE 6.5.0-rc5 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
print_report+0xd3/0x620
? kasan_complete_mode_report_info+0x7d/0x200
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
kasan_report+0xc2/0x100
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
__asan_load4+0x84/0xb0
j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
j1939_sk_recv+0x20b/0x320 [can_j1939]
? __kasan_check_write+0x18/0x20
? __pfx_j1939_sk_recv+0x10/0x10 [can_j1939]
? j1939_simple_recv+0x69/0x280 [can_j1939]
? j1939_ac_recv+0x5e/0x310 [can_j1939]
j1939_can_recv+0x43f/0x580 [can_j1939]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
? raw_rcv+0x42/0x3c0 [can_raw]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
can_rcv_filter+0x11f/0x350 [can]
can_receive+0x12f/0x190 [can]
? __pfx_can_rcv+0x10/0x10 [can]
can_rcv+0xdd/0x130 [can]
? __pfx_can_rcv+0x10/0x10 [can]
__netif_receive_skb_one_core+0x13d/0x150
? __pfx___netif_receive_skb_one_core+0x10/0x10
? __kasan_check_write+0x18/0x20
? _raw_spin_lock_irq+0x8c/0xe0
__netif_receive_skb+0x23/0xb0
process_backlog+0x107/0x260
__napi_poll+0x69/0x310
net_rx_action+0x2a1/0x580
? __pfx_net_rx_action+0x10/0x10
? __pfx__raw_spin_lock+0x10/0x10
? handle_irq_event+0x7d/0xa0
__do_softirq+0xf3/0x3f8
do_softirq+0x53/0x80
&lt;/IRQ&gt;
&lt;TASK&gt;
__local_bh_enable_ip+0x6e/0x70
netif_rx+0x16b/0x180
can_send+0x32b/0x520 [can]
? __pfx_can_send+0x10/0x10 [can]
? __check_object_size+0x299/0x410
raw_sendmsg+0x572/0x6d0 [can_raw]
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
? apparmor_socket_sendmsg+0x2f/0x40
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
sock_sendmsg+0xef/0x100
sock_write_iter+0x162/0x220
? __pfx_sock_write_iter+0x10/0x10
? __rtnl_unlock+0x47/0x80
? security_file_permission+0x54/0x320
vfs_write+0x6ba/0x750
? __pfx_vfs_write+0x10/0x10
? __fget_light+0x1ca/0x1f0
? __rcu_read_unlock+0x5b/0x280
ksys_write+0x143/0x170
? __pfx_ksys_write+0x10/0x10
? __kasan_check_read+0x15/0x20
? fpregs_assert_state_consistent+0x62/0x70
__x64_sys_write+0x47/0x60
do_syscall_64+0x60/0x90
? do_syscall_64+0x6d/0x90
? irqentry_exit+0x3f/0x50
? exc_page_fault+0x79/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Allocated by task 348:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x1f/0x30
__kasan_kmalloc+0xb5/0xc0
__kmalloc_node_track_caller+0x67/0x160
j1939_sk_setsockopt+0x284/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 349:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_free_info+0x2f/0x50
__kasan_slab_free+0x12e/0x1c0
__kmem_cache_free+0x1b9/0x380
kfree+0x7a/0x120
j1939_sk_setsockopt+0x3b2/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8(CVE-2023-52637)
In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: vsie: fix race during shadow creation
Right now it is possible to see gmap-&gt;private being zero in
kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the
fact that we add gmap-&gt;private == kvm after creation:
static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
[...]
gmap = gmap_shadow(vcpu-&gt;arch.gmap, asce, edat);
if (IS_ERR(gmap))
return PTR_ERR(gmap);
gmap-&gt;private = vcpu-&gt;kvm;
Let children inherit the private field of the parent.(CVE-2023-52639)
In the Linux kernel, the following vulnerability has been resolved:
media: rc: bpf attach/detach requires write permission
Note that bpf attach/detach also requires CAP_NET_ADMIN.(CVE-2023-52642)
In the Linux kernel, the following vulnerability has been resolved:
wifi: b43: Stop/wake correct queue in DMA Tx path when QoS is disabled
When QoS is disabled, the queue priority value will not map to the correct
ieee80211 queue since there is only one queue. Stop/wake queue 0 when QoS
is disabled to prevent trying to stop/wake a non-existent queue and failing
to stop/wake the actual queue instantiated.
Log of issue before change (with kernel parameter qos=0):
[ +5.112651] ------------[ cut here ]------------
[ +0.000005] WARNING: CPU: 7 PID: 25513 at net/mac80211/util.c:449 __ieee80211_wake_queue+0xd5/0x180 [mac80211]
[ +0.000067] Modules linked in: b43(O) snd_seq_dummy snd_hrtimer snd_seq snd_seq_device nft_chain_nat xt_MASQUERADE nf_nat xfrm_user xfrm_algo xt_addrtype overlay ccm af_packet amdgpu snd_hda_codec_cirrus snd_hda_codec_generic ledtrig_audio drm_exec amdxcp gpu_sched xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_rpfilter ipt_rpfilter xt_pkttype xt_LOG nf_log_syslog xt_tcpudp nft_compat nf_tables nfnetlink sch_fq_codel btusb uinput iTCO_wdt ctr btrtl intel_pmc_bxt i915 intel_rapl_msr mei_hdcp mei_pxp joydev at24 watchdog btintel atkbd libps2 serio radeon btbcm vivaldi_fmap btmtk intel_rapl_common snd_hda_codec_hdmi bluetooth uvcvideo nls_iso8859_1 applesmc nls_cp437 x86_pkg_temp_thermal snd_hda_intel intel_powerclamp vfat videobuf2_vmalloc coretemp fat snd_intel_dspcfg crc32_pclmul uvc polyval_clmulni snd_intel_sdw_acpi loop videobuf2_memops snd_hda_codec tun drm_suballoc_helper polyval_generic drm_ttm_helper drm_buddy tap ecdh_generic videobuf2_v4l2 gf128mul macvlan ttm ghash_clmulni_intel ecc tg3
[ +0.000044] videodev bridge snd_hda_core rapl crc16 drm_display_helper cec mousedev snd_hwdep evdev intel_cstate bcm5974 hid_appleir videobuf2_common stp mac_hid libphy snd_pcm drm_kms_helper acpi_als mei_me intel_uncore llc mc snd_timer intel_gtt industrialio_triggered_buffer apple_mfi_fastcharge i2c_i801 mei snd lpc_ich agpgart ptp i2c_smbus thunderbolt apple_gmux i2c_algo_bit kfifo_buf video industrialio soundcore pps_core wmi tiny_power_button sbs sbshc button ac cordic bcma mac80211 cfg80211 ssb rfkill libarc4 kvm_intel kvm drm irqbypass fuse backlight firmware_class efi_pstore configfs efivarfs dmi_sysfs ip_tables x_tables autofs4 dm_crypt cbc encrypted_keys trusted asn1_encoder tee tpm rng_core input_leds hid_apple led_class hid_generic usbhid hid sd_mod t10_pi crc64_rocksoft crc64 crc_t10dif crct10dif_generic ahci libahci libata uhci_hcd ehci_pci ehci_hcd crct10dif_pclmul crct10dif_common sha512_ssse3 sha512_generic sha256_ssse3 sha1_ssse3 aesni_intel usbcore scsi_mod libaes crypto_simd cryptd scsi_common
[ +0.000055] usb_common rtc_cmos btrfs blake2b_generic libcrc32c crc32c_generic crc32c_intel xor raid6_pq dm_snapshot dm_bufio dm_mod dax [last unloaded: b43(O)]
[ +0.000009] CPU: 7 PID: 25513 Comm: irq/17-b43 Tainted: G W O 6.6.7 #1-NixOS
[ +0.000003] Hardware name: Apple Inc. MacBookPro8,3/Mac-942459F5819B171B, BIOS 87.0.0.0.0 06/13/2019
[ +0.000001] RIP: 0010:__ieee80211_wake_queue+0xd5/0x180 [mac80211]
[ +0.000046] Code: 00 45 85 e4 0f 85 9b 00 00 00 48 8d bd 40 09 00 00 f0 48 0f ba ad 48 09 00 00 00 72 0f 5b 5d 41 5c 41 5d 41 5e e9 cb 6d 3c d0 &lt;0f&gt; 0b 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc 48 8d b4 16 94 00 00
[ +0.000002] RSP: 0018:ffffc90003c77d60 EFLAGS: 00010097
[ +0.000001] RAX: 0000000000000001 RBX: 0000000000000002 RCX: 0000000000000000
[ +0.000001] RDX: 0000000000000000 RSI: 0000000000000002 RDI: ffff88820b924900
[ +0.000002] RBP: ffff88820b924900 R08: ffffc90003c77d90 R09: 000000000003bfd0
[ +0.000001] R10: ffff88820b924900 R11: ffffc90003c77c68 R12: 0000000000000000
[ +0.000001] R13: 0000000000000000 R14: ffffc90003c77d90 R15: ffffffffc0fa6f40
[ +0.000001] FS: 0000000000000000(0000) GS:ffff88846fb80000(0000) knlGS:0000000000000000
[ +0.000001] CS: 0010 DS: 0
---truncated---(CVE-2023-52644)
A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution.(CVE-2023-6270)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow anonymous set with timeout flag
Anonymous sets are never used with timeout from userspace, reject this.
Exception to this rule is NFT_SET_EVAL to ensure legacy meters still work.(CVE-2024-26642)
In the Linux kernel, the following vulnerability has been resolved:
tracing: Ensure visibility when inserting an element into tracing_map
Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:
$ while true; do
echo hist:key=id.syscall:val=hitcount &gt; \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
sleep 0.001
done
$ stress-ng --sysbadaddr $(nproc)
The warning looks as follows:
[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626] tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220] hist_show+0x124/0x800
[ 2911.195692] seq_read_iter+0x1d4/0x4e8
[ 2911.196193] seq_read+0xe8/0x138
[ 2911.196638] vfs_read+0xc8/0x300
[ 2911.197078] ksys_read+0x70/0x108
[ 2911.197534] __arm64_sys_read+0x24/0x38
[ 2911.198046] invoke_syscall+0x78/0x108
[ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157] do_el0_svc+0x28/0x40
[ 2911.199613] el0_svc+0x40/0x178
[ 2911.200048] el0t_64_sync_handler+0x13c/0x158
[ 2911.200621] el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---
The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().
The check for the presence of an element with a given key in this
function is:
val = READ_ONCE(entry-&gt;val);
if (val &amp;&amp; keys_match(key, val-&gt;key, map-&gt;key_size)) ...
The write of a new entry is:
elt = get_free_elt(map);
memcpy(elt-&gt;key, key, map-&gt;key_size);
entry-&gt;val = elt;
The &quot;memcpy(elt-&gt;key, key, map-&gt;key_size);&quot; and &quot;entry-&gt;val = elt;&quot;
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn&apos;t match
an already present val-&gt;key and subse
---truncated---(CVE-2024-26645)
In the Linux kernel, the following vulnerability has been resolved:
tunnels: fix out of bounds access when building IPv6 PMTU error
If the ICMPv6 error is built from a non-linear skb we get the following
splat,
BUG: KASAN: slab-out-of-bounds in do_csum+0x220/0x240
Read of size 4 at addr ffff88811d402c80 by task netperf/820
CPU: 0 PID: 820 Comm: netperf Not tainted 6.8.0-rc1+ #543
...
kasan_report+0xd8/0x110
do_csum+0x220/0x240
csum_partial+0xc/0x20
skb_tunnel_check_pmtu+0xeb9/0x3280
vxlan_xmit_one+0x14c2/0x4080
vxlan_xmit+0xf61/0x5c00
dev_hard_start_xmit+0xfb/0x510
__dev_queue_xmit+0x7cd/0x32a0
br_dev_queue_push_xmit+0x39d/0x6a0
Use skb_checksum instead of csum_partial who cannot deal with non-linear
SKBs.(CVE-2024-26665)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_limit: reject configurations that cause integer overflow
Reject bogus configs where internal token counter wraps around.
This only occurs with very very large requests, such as 17gbyte/s.
Its better to reject this rather than having incorrect ratelimit.(CVE-2024-26668)
In the Linux kernel, the following vulnerability has been resolved:
net/sched: flower: Fix chain template offload
When a qdisc is deleted from a net device the stack instructs the
underlying driver to remove its flow offload callback from the
associated filter block using the &apos;FLOW_BLOCK_UNBIND&apos; command. The stack
then continues to replay the removal of the filters in the block for
this driver by iterating over the chains in the block and invoking the
&apos;reoffload&apos; operation of the classifier being used. In turn, the
classifier in its &apos;reoffload&apos; operation prepares and emits a
&apos;FLOW_CLS_DESTROY&apos; command for each filter.
However, the stack does not do the same for chain templates and the
underlying driver never receives a &apos;FLOW_CLS_TMPLT_DESTROY&apos; command when
a qdisc is deleted. This results in a memory leak [1] which can be
reproduced using [2].
Fix by introducing a &apos;tmplt_reoffload&apos; operation and have the stack
invoke it with the appropriate arguments as part of the replay.
Implement the operation in the sole classifier that supports chain
templates (flower) by emitting the &apos;FLOW_CLS_TMPLT_{CREATE,DESTROY}&apos;
command based on whether a flow offload callback is being bound to a
filter block or being unbound from one.
As far as I can tell, the issue happens since cited commit which
reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains()
in __tcf_block_put(). The order cannot be reversed as the filter block
is expected to be freed after flushing all the chains.
[1]
unreferenced object 0xffff888107e28800 (size 2048):
comm &quot;tc&quot;, pid 1079, jiffies 4294958525 (age 3074.287s)
hex dump (first 32 bytes):
b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[......
01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................
backtrace:
[&lt;ffffffff81c06a68&gt;] __kmem_cache_alloc_node+0x1e8/0x320
[&lt;ffffffff81ab374e&gt;] __kmalloc+0x4e/0x90
[&lt;ffffffff832aec6d&gt;] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0
[&lt;ffffffff832bc195&gt;] mlxsw_sp_flower_tmplt_create+0x145/0x180
[&lt;ffffffff832b2e1a&gt;] mlxsw_sp_flow_block_cb+0x1ea/0x280
[&lt;ffffffff83a10613&gt;] tc_setup_cb_call+0x183/0x340
[&lt;ffffffff83a9f85a&gt;] fl_tmplt_create+0x3da/0x4c0
[&lt;ffffffff83a22435&gt;] tc_ctl_chain+0xa15/0x1170
[&lt;ffffffff838a863c&gt;] rtnetlink_rcv_msg+0x3cc/0xed0
[&lt;ffffffff83ac87f0&gt;] netlink_rcv_skb+0x170/0x440
[&lt;ffffffff83ac6270&gt;] netlink_unicast+0x540/0x820
[&lt;ffffffff83ac6e28&gt;] netlink_sendmsg+0x8d8/0xda0
[&lt;ffffffff83793def&gt;] ____sys_sendmsg+0x30f/0xa80
[&lt;ffffffff8379d29a&gt;] ___sys_sendmsg+0x13a/0x1e0
[&lt;ffffffff8379d50c&gt;] __sys_sendmsg+0x11c/0x1f0
[&lt;ffffffff843b9ce0&gt;] do_syscall_64+0x40/0xe0
unreferenced object 0xffff88816d2c0400 (size 1024):
comm &quot;tc&quot;, pid 1079, jiffies 4294958525 (age 3074.287s)
hex dump (first 32 bytes):
40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8.....
10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m....
backtrace:
[&lt;ffffffff81c06a68&gt;] __kmem_cache_alloc_node+0x1e8/0x320
[&lt;ffffffff81ab36c1&gt;] __kmalloc_node+0x51/0x90
[&lt;ffffffff81a8ed96&gt;] kvmalloc_node+0xa6/0x1f0
[&lt;ffffffff82827d03&gt;] bucket_table_alloc.isra.0+0x83/0x460
[&lt;ffffffff82828d2b&gt;] rhashtable_init+0x43b/0x7c0
[&lt;ffffffff832aed48&gt;] mlxsw_sp_acl_ruleset_get+0x428/0x7a0
[&lt;ffffffff832bc195&gt;] mlxsw_sp_flower_tmplt_create+0x145/0x180
[&lt;ffffffff832b2e1a&gt;] mlxsw_sp_flow_block_cb+0x1ea/0x280
[&lt;ffffffff83a10613&gt;] tc_setup_cb_call+0x183/0x340
[&lt;ffffffff83a9f85a&gt;] fl_tmplt_create+0x3da/0x4c0
[&lt;ffffffff83a22435&gt;] tc_ctl_chain+0xa15/0x1170
[&lt;ffffffff838a863c&gt;] rtnetlink_rcv_msg+0x3cc/0xed0
[&lt;ffffffff83ac87f0&gt;] netlink_rcv_skb+0x170/0x440
[&lt;ffffffff83ac6270&gt;] netlink_unicast+0x540/0x820
[&lt;ffffffff83ac6e28&gt;] netlink_sendmsg+0x8d8/0xda0
[&lt;ffffffff83793def&gt;] ____sys_sendmsg+0x30f/0xa80
[2]
# tc qdisc add dev swp1 clsact
# tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32
# tc qdisc del dev
---truncated---(CVE-2024-26669)
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix IO hang from sbitmap wakeup race
In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered
with the following blk_mq_get_driver_tag() in case of getting driver
tag failure.
Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe
the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime
blk_mq_mark_tag_wait() can&apos;t get driver tag successfully.
This issue can be reproduced by running the following test in loop, and
fio hang can be observed in &lt; 30min when running it on my test VM
in laptop.
modprobe -r scsi_debug
modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4
dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename`
fio --filename=/dev/&quot;$dev&quot; --direct=1 --rw=randrw --bs=4k --iodepth=1 \
--runtime=100 --numjobs=40 --time_based --name=test \
--ioengine=libaio
Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which
is just fine in case of running out of tag.(CVE-2024-26671)
In the Linux kernel, the following vulnerability has been resolved:
inet: read sk-&gt;sk_family once in inet_recv_error()
inet_recv_error() is called without holding the socket lock.
IPv6 socket could mutate to IPv4 with IPV6_ADDRFORM
socket option and trigger a KCSAN warning.(CVE-2024-26679)
In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: Fix DMA mapping for PTP hwts ring
Function aq_ring_hwts_rx_alloc() maps extra AQ_CFG_RXDS_DEF bytes
for PTP HWTS ring but then generic aq_ring_free() does not take this
into account.
Create and use a specific function to free HWTS ring to fix this
issue.
Trace:
[ 215.351607] ------------[ cut here ]------------
[ 215.351612] DMA-API: atlantic 0000:4b:00.0: device driver frees DMA memory with different size [device address=0x00000000fbdd0000] [map size=34816 bytes] [unmap size=32768 bytes]
[ 215.351635] WARNING: CPU: 33 PID: 10759 at kernel/dma/debug.c:988 check_unmap+0xa6f/0x2360
...
[ 215.581176] Call Trace:
[ 215.583632] &lt;TASK&gt;
[ 215.585745] ? show_trace_log_lvl+0x1c4/0x2df
[ 215.590114] ? show_trace_log_lvl+0x1c4/0x2df
[ 215.594497] ? debug_dma_free_coherent+0x196/0x210
[ 215.599305] ? check_unmap+0xa6f/0x2360
[ 215.603147] ? __warn+0xca/0x1d0
[ 215.606391] ? check_unmap+0xa6f/0x2360
[ 215.610237] ? report_bug+0x1ef/0x370
[ 215.613921] ? handle_bug+0x3c/0x70
[ 215.617423] ? exc_invalid_op+0x14/0x50
[ 215.621269] ? asm_exc_invalid_op+0x16/0x20
[ 215.625480] ? check_unmap+0xa6f/0x2360
[ 215.629331] ? mark_lock.part.0+0xca/0xa40
[ 215.633445] debug_dma_free_coherent+0x196/0x210
[ 215.638079] ? __pfx_debug_dma_free_coherent+0x10/0x10
[ 215.643242] ? slab_free_freelist_hook+0x11d/0x1d0
[ 215.648060] dma_free_attrs+0x6d/0x130
[ 215.651834] aq_ring_free+0x193/0x290 [atlantic]
[ 215.656487] aq_ptp_ring_free+0x67/0x110 [atlantic]
...
[ 216.127540] ---[ end trace 6467e5964dd2640b ]---
[ 216.132160] DMA-API: Mapped at:
[ 216.132162] debug_dma_alloc_coherent+0x66/0x2f0
[ 216.132165] dma_alloc_attrs+0xf5/0x1b0
[ 216.132168] aq_ring_hwts_rx_alloc+0x150/0x1f0 [atlantic]
[ 216.132193] aq_ptp_ring_alloc+0x1bb/0x540 [atlantic]
[ 216.132213] aq_nic_init+0x4a1/0x760 [atlantic](CVE-2024-26680)
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: xgmac: fix handling of DPP safety error for DMA channels
Commit 56e58d6c8a56 (&quot;net: stmmac: Implement Safety Features in
XGMAC core&quot;) checks and reports safety errors, but leaves the
Data Path Parity Errors for each channel in DMA unhandled at all, lead to
a storm of interrupt.
Fix it by checking and clearing the DMA_DPP_Interrupt_Status register.(CVE-2024-26684)
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential bug in end_buffer_async_write
According to a syzbot report, end_buffer_async_write(), which handles the
completion of block device writes, may detect abnormal condition of the
buffer async_write flag and cause a BUG_ON failure when using nilfs2.
Nilfs2 itself does not use end_buffer_async_write(). But, the async_write
flag is now used as a marker by commit 7f42ec394156 (&quot;nilfs2: fix issue
with race condition of competition between segments for dirty blocks&quot;) as
a means of resolving double list insertion of dirty blocks in
nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the
resulting crash.
This modification is safe as long as it is used for file data and b-tree
node blocks where the page caches are independent. However, it was
irrelevant and redundant to also introduce async_write for segment summary
and super root blocks that share buffers with the backing device. This
led to the possibility that the BUG_ON check in end_buffer_async_write
would fail as described above, if independent writebacks of the backing
device occurred in parallel.
The use of async_write for segment summary buffers has already been
removed in a previous change.
Fix this issue by removing the manipulation of the async_write flag for
the remaining super root block buffer.(CVE-2024-26685)
In the Linux kernel, the following vulnerability has been resolved:
fs,hugetlb: fix NULL pointer dereference in hugetlbs_fill_super
When configuring a hugetlb filesystem via the fsconfig() syscall, there is
a possible NULL dereference in hugetlbfs_fill_super() caused by assigning
NULL to ctx-&gt;hstate in hugetlbfs_parse_param() when the requested pagesize
is non valid.
E.g: Taking the following steps:
fd = fsopen(&quot;hugetlbfs&quot;, FSOPEN_CLOEXEC);
fsconfig(fd, FSCONFIG_SET_STRING, &quot;pagesize&quot;, &quot;1024&quot;, 0);
fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
Given that the requested &quot;pagesize&quot; is invalid, ctxt-&gt;hstate will be replaced
with NULL, losing its previous value, and we will print an error:
...
...
case Opt_pagesize:
ps = memparse(param-&gt;string, &amp;rest);
ctx-&gt;hstate = h;
if (!ctx-&gt;hstate) {
pr_err(&quot;Unsupported page size %lu MB\n&quot;, ps / SZ_1M);
return -EINVAL;
}
return 0;
...
...
This is a problem because later on, we will dereference ctxt-&gt;hstate in
hugetlbfs_fill_super()
...
...
sb-&gt;s_blocksize = huge_page_size(ctx-&gt;hstate);
...
...
Causing below Oops.
Fix this by replacing cxt-&gt;hstate value only when then pagesize is known
to be valid.
kernel: hugetlbfs: Unsupported page size 0 MB
kernel: BUG: kernel NULL pointer dereference, address: 0000000000000028
kernel: #PF: supervisor read access in kernel mode
kernel: #PF: error_code(0x0000) - not-present page
kernel: PGD 800000010f66c067 P4D 800000010f66c067 PUD 1b22f8067 PMD 0
kernel: Oops: 0000 [#1] PREEMPT SMP PTI
kernel: CPU: 4 PID: 5659 Comm: syscall Tainted: G E 6.8.0-rc2-default+ #22 5a47c3fef76212addcc6eb71344aabc35190ae8f
kernel: Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0
kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 &lt;8b&gt; 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28
kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246
kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004
kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000
kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004
kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000
kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400
kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0
kernel: Call Trace:
kernel: &lt;TASK&gt;
kernel: ? __die_body+0x1a/0x60
kernel: ? page_fault_oops+0x16f/0x4a0
kernel: ? search_bpf_extables+0x65/0x70
kernel: ? fixup_exception+0x22/0x310
kernel: ? exc_page_fault+0x69/0x150
kernel: ? asm_exc_page_fault+0x22/0x30
kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10
kernel: ? hugetlbfs_fill_super+0xb4/0x1a0
kernel: ? hugetlbfs_fill_super+0x28/0x1a0
kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10
kernel: vfs_get_super+0x40/0xa0
kernel: ? __pfx_bpf_lsm_capable+0x10/0x10
kernel: vfs_get_tree+0x25/0xd0
kernel: vfs_cmd_create+0x64/0xe0
kernel: __x64_sys_fsconfig+0x395/0x410
kernel: do_syscall_64+0x80/0x160
kernel: ? syscall_exit_to_user_mode+0x82/0x240
kernel: ? do_syscall_64+0x8d/0x160
kernel: ? syscall_exit_to_user_mode+0x82/0x240
kernel: ? do_syscall_64+0x8d/0x160
kernel: ? exc_page_fault+0x69/0x150
kernel: entry_SYSCALL_64_after_hwframe+0x6e/0x76
kernel: RIP: 0033:0x7ffbc0cb87c9
kernel: Code: 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 8b 0d 97 96 0d 00 f7 d8 64 89 01 48
kernel: RSP: 002b:00007ffc29d2f388 EFLAGS: 00000206 ORIG_RAX: 00000000000001af
kernel: RAX: fffffffffff
---truncated---(CVE-2024-26688)
In the Linux kernel, the following vulnerability has been resolved:
ceph: prevent use-after-free in encode_cap_msg()
In fs/ceph/caps.c, in encode_cap_msg(), &quot;use after free&quot; error was
caught by KASAN at this line - &apos;ceph_buffer_get(arg-&gt;xattr_buf);&apos;. This
implies before the refcount could be increment here, it was freed.
In same file, in &quot;handle_cap_grant()&quot; refcount is decremented by this
line - &apos;ceph_buffer_put(ci-&gt;i_xattrs.blob);&apos;. It appears that a race
occurred and resource was freed by the latter line before the former
line could increment it.
encode_cap_msg() is called by __send_cap() and __send_cap() is called by
ceph_check_caps() after calling __prep_cap(). __prep_cap() is where
arg-&gt;xattr_buf is assigned to ci-&gt;i_xattrs.blob. This is the spot where
the refcount must be increased to prevent &quot;use after free&quot; error.(CVE-2024-26689)
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix data corruption in dsync block recovery for small block sizes
The helper function nilfs_recovery_copy_block() of
nilfs_recovery_dsync_blocks(), which recovers data from logs created by
data sync writes during a mount after an unclean shutdown, incorrectly
calculates the on-page offset when copying repair data to the file&apos;s page
cache. In environments where the block size is smaller than the page
size, this flaw can cause data corruption and leak uninitialized memory
bytes during the recovery process.
Fix these issues by correcting this byte offset calculation on the page.(CVE-2024-26697)
In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix random data corruption from exception handler
The current exception handler implementation, which assists when accessing
user space memory, may exhibit random data corruption if the compiler decides
to use a different register than the specified register %r29 (defined in
ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another
register, the fault handler will nevertheless store -EFAULT into %r29 and thus
trash whatever this register is used for.
Looking at the assembly I found that this happens sometimes in emulate_ldd().
To solve the issue, the easiest solution would be if it somehow is
possible to tell the fault handler which register is used to hold the error
code. Using %0 or %1 in the inline assembly is not posssible as it will show
up as e.g. %r29 (with the &quot;%r&quot; prefix), which the GNU assembler can not
convert to an integer.
This patch takes another, better and more flexible approach:
We extend the __ex_table (which is out of the execution path) by one 32-word.
In this word we tell the compiler to insert the assembler instruction
&quot;or %r0,%r0,%reg&quot;, where %reg references the register which the compiler
choosed for the error return code.
In case of an access failure, the fault handler finds the __ex_table entry and
can examine the opcode. The used register is encoded in the lowest 5 bits, and
the fault handler can then store -EFAULT into this register.
Since we extend the __ex_table to 3 words we can&apos;t use the BUILDTIME_TABLE_SORT
config option any longer.(CVE-2024-26706)
In the Linux kernel, the following vulnerability has been resolved:
net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame()
Syzkaller reported [1] hitting a warning after failing to allocate
resources for skb in hsr_init_skb(). Since a WARN_ONCE() call will
not help much in this case, it might be prudent to switch to
netdev_warn_once(). At the very least it will suppress syzkaller
reports such as [1].
Just in case, use netdev_warn_once() in send_prp_supervision_frame()
for similar reasons.
[1]
HSR: Could not send supervision frame
WARNING: CPU: 1 PID: 85 at net/hsr/hsr_device.c:294 send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
RIP: 0010:send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
...
Call Trace:
&lt;IRQ&gt;
hsr_announce+0x114/0x370 net/hsr/hsr_device.c:382
call_timer_fn+0x193/0x590 kernel/time/timer.c:1700
expire_timers kernel/time/timer.c:1751 [inline]
__run_timers+0x764/0xb20 kernel/time/timer.c:2022
run_timer_softirq+0x58/0xd0 kernel/time/timer.c:2035
__do_softirq+0x21a/0x8de kernel/softirq.c:553
invoke_softirq kernel/softirq.c:427 [inline]
__irq_exit_rcu kernel/softirq.c:632 [inline]
irq_exit_rcu+0xb7/0x120 kernel/softirq.c:644
sysvec_apic_timer_interrupt+0x95/0xb0 arch/x86/kernel/apic/apic.c:1076
&lt;/IRQ&gt;
&lt;TASK&gt;
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:649
...
This issue is also found in older kernels (at least up to 5.10).(CVE-2024-26707)
In the Linux kernel, the following vulnerability has been resolved:
mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again
(struct dirty_throttle_control *)-&gt;thresh is an unsigned long, but is
passed as the u32 divisor argument to div_u64(). On architectures where
unsigned long is 64 bytes, the argument will be implicitly truncated.
Use div64_u64() instead of div_u64() so that the value used in the &quot;is
this a safe division&quot; check is the same as the divisor.
Also, remove redundant cast of the numerator to u64, as that should happen
implicitly.
This would be difficult to exploit in memcg domain, given the ratio-based
arithmetic domain_drity_limits() uses, but is much easier in global
writeback domain with a BDI_CAP_STRICTLIMIT-backing device, using e.g.
vm.dirty_bytes=(1&lt;&lt;32)*PAGE_SIZE so that dtc-&gt;thresh == (1&lt;&lt;32)(CVE-2024-26720)
In the Linux kernel, the following vulnerability has been resolved:
btrfs: don&apos;t drop extent_map for free space inode on write error
While running the CI for an unrelated change I hit the following panic
with generic/648 on btrfs_holes_spacecache.
assertion failed: block_start != EXTENT_MAP_HOLE, in fs/btrfs/extent_io.c:1385
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:1385!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 2695096 Comm: fsstress Kdump: loaded Tainted: G W 6.8.0-rc2+ #1
RIP: 0010:__extent_writepage_io.constprop.0+0x4c1/0x5c0
Call Trace:
&lt;TASK&gt;
extent_write_cache_pages+0x2ac/0x8f0
extent_writepages+0x87/0x110
do_writepages+0xd5/0x1f0
filemap_fdatawrite_wbc+0x63/0x90
__filemap_fdatawrite_range+0x5c/0x80
btrfs_fdatawrite_range+0x1f/0x50
btrfs_write_out_cache+0x507/0x560
btrfs_write_dirty_block_groups+0x32a/0x420
commit_cowonly_roots+0x21b/0x290
btrfs_commit_transaction+0x813/0x1360
btrfs_sync_file+0x51a/0x640
__x64_sys_fdatasync+0x52/0x90
do_syscall_64+0x9c/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
This happens because we fail to write out the free space cache in one
instance, come back around and attempt to write it again. However on
the second pass through we go to call btrfs_get_extent() on the inode to
get the extent mapping. Because this is a new block group, and with the
free space inode we always search the commit root to avoid deadlocking
with the tree, we find nothing and return a EXTENT_MAP_HOLE for the
requested range.
This happens because the first time we try to write the space cache out
we hit an error, and on an error we drop the extent mapping. This is
normal for normal files, but the free space cache inode is special. We
always expect the extent map to be correct. Thus the second time
through we end up with a bogus extent map.
Since we&apos;re deprecating this feature, the most straightforward way to
fix this is to simply skip dropping the extent map range for this failed
range.
I shortened the test by using error injection to stress the area to make
it easier to reproduce. With this patch in place we no longer panic
with my error injection test.(CVE-2024-26726)
In the Linux kernel, the following vulnerability has been resolved:
arp: Prevent overflow in arp_req_get().
syzkaller reported an overflown write in arp_req_get(). [0]
When ioctl(SIOCGARP) is issued, arp_req_get() looks up an neighbour
entry and copies neigh-&gt;ha to struct arpreq.arp_ha.sa_data.
The arp_ha here is struct sockaddr, not struct sockaddr_storage, so
the sa_data buffer is just 14 bytes.
In the splat below, 2 bytes are overflown to the next int field,
arp_flags. We initialise the field just after the memcpy(), so it&apos;s
not a problem.
However, when dev-&gt;addr_len is greater than 22 (e.g. MAX_ADDR_LEN),
arp_netmask is overwritten, which could be set as htonl(0xFFFFFFFFUL)
in arp_ioctl() before calling arp_req_get().
To avoid the overflow, let&apos;s limit the max length of memcpy().
Note that commit b5f0de6df6dc (&quot;net: dev: Convert sa_data to flexible
array in struct sockaddr&quot;) just silenced syzkaller.
[0]:
memcpy: detected field-spanning write (size 16) of single field &quot;r-&gt;arp_ha.sa_data&quot; at net/ipv4/arp.c:1128 (size 14)
WARNING: CPU: 0 PID: 144638 at net/ipv4/arp.c:1128 arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Modules linked in:
CPU: 0 PID: 144638 Comm: syz-executor.4 Not tainted 6.1.74 #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014
RIP: 0010:arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Code: fd ff ff e8 41 42 de fb b9 0e 00 00 00 4c 89 fe 48 c7 c2 20 6d ab 87 48 c7 c7 80 6d ab 87 c6 05 25 af 72 04 01 e8 5f 8d ad fb &lt;0f&gt; 0b e9 6c fd ff ff e8 13 42 de fb be 03 00 00 00 4c 89 e7 e8 a6
RSP: 0018:ffffc900050b7998 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff88803a815000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8641a44a RDI: 0000000000000001
RBP: ffffc900050b7a98 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 203a7970636d656d R12: ffff888039c54000
R13: 1ffff92000a16f37 R14: ffff88803a815084 R15: 0000000000000010
FS: 00007f172bf306c0(0000) GS:ffff88805aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f172b3569f0 CR3: 0000000057f12005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
arp_ioctl+0x33f/0x4b0 net/ipv4/arp.c:1261
inet_ioctl+0x314/0x3a0 net/ipv4/af_inet.c:981
sock_do_ioctl+0xdf/0x260 net/socket.c:1204
sock_ioctl+0x3ef/0x650 net/socket.c:1321
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x18e/0x220 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x37/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x64/0xce
RIP: 0033:0x7f172b262b8d
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f172bf300b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f172b3abf80 RCX: 00007f172b262b8d
RDX: 0000000020000000 RSI: 0000000000008954 RDI: 0000000000000003
RBP: 00007f172b2d3493 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f172b3abf80 R15: 00007f172bf10000
&lt;/TASK&gt;(CVE-2024-26733)
In the Linux kernel, the following vulnerability has been resolved:
devlink: fix possible use-after-free and memory leaks in devlink_init()
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.
Make an unregister in case of unsuccessful registration.(CVE-2024-26734)
In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix possible use-after-free and null-ptr-deref
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.(CVE-2024-26735)
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: don&apos;t override retval if we already lost the skb
If we&apos;re redirecting the skb, and haven&apos;t called tcf_mirred_forward(),
yet, we need to tell the core to drop the skb by setting the retcode
to SHOT. If we have called tcf_mirred_forward(), however, the skb
is out of our hands and returning SHOT will lead to UaF.
Move the retval override to the error path which actually need it.(CVE-2024-26739)
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: use the backlog for mirred ingress
The test Davide added in commit ca22da2fbd69 (&quot;act_mirred: use the backlog
for nested calls to mirred ingress&quot;) hangs our testing VMs every 10 or so
runs, with the familiar tcp_v4_rcv -&gt; tcp_v4_rcv deadlock reported by
lockdep.
The problem as previously described by Davide (see Link) is that
if we reverse flow of traffic with the redirect (egress -&gt; ingress)
we may reach the same socket which generated the packet. And we may
still be holding its socket lock. The common solution to such deadlocks
is to put the packet in the Rx backlog, rather than run the Rx path
inline. Do that for all egress -&gt; ingress reversals, not just once
we started to nest mirred calls.
In the past there was a concern that the backlog indirection will
lead to loss of error reporting / less accurate stats. But the current
workaround does not seem to address the issue.(CVE-2024-26740)
In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix qedr_create_user_qp error flow
Avoid the following warning by making sure to free the allocated
resources in case that qedr_init_user_queue() fail.
-----------[ cut here ]-----------
WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3
ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt]
CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022
RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 &lt;0f&gt; 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff
RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286
RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016
RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600
RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80
R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0
Call Trace:
&lt;TASK&gt;
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? __warn+0x81/0x110
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? report_bug+0x10a/0x140
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
__fput+0x94/0x250
task_work_run+0x5c/0x90
do_exit+0x270/0x4a0
do_group_exit+0x2d/0x90
get_signal+0x87c/0x8c0
arch_do_signal_or_restart+0x25/0x100
? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs]
exit_to_user_mode_loop+0x9c/0x130
exit_to_user_mode_prepare+0xb6/0x100
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
? common_interrupt+0x43/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x1470abe3ec6b
Code: Unable to access opcode bytes at RIP 0x1470abe3ec41.
RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b
RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004
RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00
R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358
R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470
&lt;/TASK&gt;
--[ end trace 888a9b92e04c5c97 ]--(CVE-2024-26743)
In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Support specifying the srpt_service_guid parameter
Make loading ib_srpt with this parameter set work. The current behavior is
that setting that parameter while loading the ib_srpt kernel module
triggers the following kernel crash:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Call Trace:
&lt;TASK&gt;
parse_one+0x18c/0x1d0
parse_args+0xe1/0x230
load_module+0x8de/0xa60
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x181/0x240
__x64_sys_finit_module+0x5a/0xb0
do_syscall_64+0x5f/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76(CVE-2024-26744)
In the Linux kernel, the following vulnerability has been resolved:
gtp: fix use-after-free and null-ptr-deref in gtp_genl_dump_pdp()
The gtp_net_ops pernet operations structure for the subsystem must be
registered before registering the generic netlink family.
Syzkaller hit &apos;general protection fault in gtp_genl_dump_pdp&apos; bug:
general protection fault, probably for non-canonical address
0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 1 PID: 5826 Comm: gtp Not tainted 6.8.0-rc3-std-def-alt1 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014
RIP: 0010:gtp_genl_dump_pdp+0x1be/0x800 [gtp]
Code: c6 89 c6 e8 64 e9 86 df 58 45 85 f6 0f 85 4e 04 00 00 e8 c5 ee 86
df 48 8b 54 24 18 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 &lt;80&gt;
3c 02 00 0f 85 de 05 00 00 48 8b 44 24 18 4c 8b 30 4c 39 f0 74
RSP: 0018:ffff888014107220 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff88800fcda588 R14: 0000000000000001 R15: 0000000000000000
FS: 00007f1be4eb05c0(0000) GS:ffff88806ce80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1be4e766cf CR3: 000000000c33e000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
? show_regs+0x90/0xa0
? die_addr+0x50/0xd0
? exc_general_protection+0x148/0x220
? asm_exc_general_protection+0x22/0x30
? gtp_genl_dump_pdp+0x1be/0x800 [gtp]
? __alloc_skb+0x1dd/0x350
? __pfx___alloc_skb+0x10/0x10
genl_dumpit+0x11d/0x230
netlink_dump+0x5b9/0xce0
? lockdep_hardirqs_on_prepare+0x253/0x430
? __pfx_netlink_dump+0x10/0x10
? kasan_save_track+0x10/0x40
? __kasan_kmalloc+0x9b/0xa0
? genl_start+0x675/0x970
__netlink_dump_start+0x6fc/0x9f0
genl_family_rcv_msg_dumpit+0x1bb/0x2d0
? __pfx_genl_family_rcv_msg_dumpit+0x10/0x10
? genl_op_from_small+0x2a/0x440
? cap_capable+0x1d0/0x240
? __pfx_genl_start+0x10/0x10
? __pfx_genl_dumpit+0x10/0x10
? __pfx_genl_done+0x10/0x10
? security_capable+0x9d/0xe0(CVE-2024-26754)
In the Linux kernel, the following vulnerability has been resolved:
dm-crypt: don&apos;t modify the data when using authenticated encryption
It was said that authenticated encryption could produce invalid tag when
the data that is being encrypted is modified [1]. So, fix this problem by
copying the data into the clone bio first and then encrypt them inside the
clone bio.
This may reduce performance, but it is needed to prevent the user from
corrupting the device by writing data with O_DIRECT and modifying them at
the same time.
[1] https://lore.kernel.org/all/20240207004723.GA35324@sol.localdomain/T/(CVE-2024-26763)
In the Linux kernel, the following vulnerability has been resolved:
spi: hisi-sfc-v3xx: Return IRQ_NONE if no interrupts were detected
Return IRQ_NONE from the interrupt handler when no interrupt was
detected. Because an empty interrupt will cause a null pointer error:
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000008
Call trace:
complete+0x54/0x100
hisi_sfc_v3xx_isr+0x2c/0x40 [spi_hisi_sfc_v3xx]
__handle_irq_event_percpu+0x64/0x1e0
handle_irq_event+0x7c/0x1cc(CVE-2024-26776)
In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix double-free on socket dismantle
when MPTCP server accepts an incoming connection, it clones its listener
socket. However, the pointer to &apos;inet_opt&apos; for the new socket has the same
value as the original one: as a consequence, on program exit it&apos;s possible
to observe the following splat:
BUG: KASAN: double-free in inet_sock_destruct+0x54f/0x8b0
Free of addr ffff888485950880 by task swapper/25/0
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Not tainted 6.8.0-rc1+ #609
Hardware name: Supermicro SYS-6027R-72RF/X9DRH-7TF/7F/iTF/iF, BIOS 3.0 07/26/2013
Call Trace:
&lt;IRQ&gt;
dump_stack_lvl+0x32/0x50
print_report+0xca/0x620
kasan_report_invalid_free+0x64/0x90
__kasan_slab_free+0x1aa/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
rcu_do_batch+0x34e/0xd90
rcu_core+0x559/0xac0
__do_softirq+0x183/0x5a4
irq_exit_rcu+0x12d/0x170
sysvec_apic_timer_interrupt+0x6b/0x80
&lt;/IRQ&gt;
&lt;TASK&gt;
asm_sysvec_apic_timer_interrupt+0x16/0x20
RIP: 0010:cpuidle_enter_state+0x175/0x300
Code: 30 00 0f 84 1f 01 00 00 83 e8 01 83 f8 ff 75 e5 48 83 c4 18 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc fb 45 85 ed &lt;0f&gt; 89 60 ff ff ff 48 c1 e5 06 48 c7 43 18 00 00 00 00 48 83 44 2b
RSP: 0018:ffff888481cf7d90 EFLAGS: 00000202
RAX: 0000000000000000 RBX: ffff88887facddc8 RCX: 0000000000000000
RDX: 1ffff1110ff588b1 RSI: 0000000000000019 RDI: ffff88887fac4588
RBP: 0000000000000004 R08: 0000000000000002 R09: 0000000000043080
R10: 0009b02ea273363f R11: ffff88887fabf42b R12: ffffffff932592e0
R13: 0000000000000004 R14: 0000000000000000 R15: 00000022c880ec80
cpuidle_enter+0x4a/0xa0
do_idle+0x310/0x410
cpu_startup_entry+0x51/0x60
start_secondary+0x211/0x270
secondary_startup_64_no_verify+0x184/0x18b
&lt;/TASK&gt;
Allocated by task 6853:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
__kmalloc+0x1eb/0x450
cipso_v4_sock_setattr+0x96/0x360
netlbl_sock_setattr+0x132/0x1f0
selinux_netlbl_socket_post_create+0x6c/0x110
selinux_socket_post_create+0x37b/0x7f0
security_socket_post_create+0x63/0xb0
__sock_create+0x305/0x450
__sys_socket_create.part.23+0xbd/0x130
__sys_socket+0x37/0xb0
__x64_sys_socket+0x6f/0xb0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 6858:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x12c/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
subflow_ulp_release+0x1f0/0x250
tcp_cleanup_ulp+0x6e/0x110
tcp_v4_destroy_sock+0x5a/0x3a0
inet_csk_destroy_sock+0x135/0x390
tcp_fin+0x416/0x5c0
tcp_data_queue+0x1bc8/0x4310
tcp_rcv_state_process+0x15a3/0x47b0
tcp_v4_do_rcv+0x2c1/0x990
tcp_v4_rcv+0x41fb/0x5ed0
ip_protocol_deliver_rcu+0x6d/0x9f0
ip_local_deliver_finish+0x278/0x360
ip_local_deliver+0x182/0x2c0
ip_rcv+0xb5/0x1c0
__netif_receive_skb_one_core+0x16e/0x1b0
process_backlog+0x1e3/0x650
__napi_poll+0xa6/0x500
net_rx_action+0x740/0xbb0
__do_softirq+0x183/0x5a4
The buggy address belongs to the object at ffff888485950880
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes inside of
64-byte region [ffff888485950880, ffff8884859508c0)
The buggy address belongs to the physical page:
page:0000000056d1e95e refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888485950700 pfn:0x485950
flags: 0x57ffffc0000800(slab|node=1|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0057ffffc0000800 ffff88810004c640 ffffea00121b8ac0 dead000000000006
raw: ffff888485950700 0000000000200019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888485950780: fa fb fb
---truncated---(CVE-2024-26782)
In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren&apos;t supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path.(CVE-2024-26787)
In the Linux kernel, the following vulnerability has been resolved:
btrfs: dev-replace: properly validate device names
There&apos;s a syzbot report that device name buffers passed to device
replace are not properly checked for string termination which could lead
to a read out of bounds in getname_kernel().
Add a helper that validates both source and target device name buffers.
For devid as the source initialize the buffer to empty string in case
something tries to read it later.
This was originally analyzed and fixed in a different way by Edward Adam
Davis (see links).(CVE-2024-26791)
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of anonymous device after snapshot creation failure
When creating a snapshot we may do a double free of an anonymous device
in case there&apos;s an error committing the transaction. The second free may
result in freeing an anonymous device number that was allocated by some
other subsystem in the kernel or another btrfs filesystem.
The steps that lead to this:
1) At ioctl.c:create_snapshot() we allocate an anonymous device number
and assign it to pending_snapshot-&gt;anon_dev;
2) Then we call btrfs_commit_transaction() and end up at
transaction.c:create_pending_snapshot();
3) There we call btrfs_get_new_fs_root() and pass it the anonymous device
number stored in pending_snapshot-&gt;anon_dev;
4) btrfs_get_new_fs_root() frees that anonymous device number because
btrfs_lookup_fs_root() returned a root - someone else did a lookup
of the new root already, which could some task doing backref walking;
5) After that some error happens in the transaction commit path, and at
ioctl.c:create_snapshot() we jump to the &apos;fail&apos; label, and after
that we free again the same anonymous device number, which in the
meanwhile may have been reallocated somewhere else, because
pending_snapshot-&gt;anon_dev still has the same value as in step 1.
Recently syzbot ran into this and reported the following trace:
------------[ cut here ]------------
ida_free called for id=51 which is not allocated.
WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525
Modules linked in:
CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525
Code: 10 42 80 3c 28 (...)
RSP: 0018:ffffc90015a67300 EFLAGS: 00010246
RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000
RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000
RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4
R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246
R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246
FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0
Call Trace:
&lt;TASK&gt;
btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346
create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931
btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404
create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306
btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393
btrfs_ioctl+0xa74/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7fca3e67dda9
Code: 28 00 00 00 (...)
RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9
RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658
&lt;/TASK&gt;
Where we get an explicit message where we attempt to free an anonymous
device number that is not currently allocated. It happens in a different
code path from the example below, at btrfs_get_root_ref(), so this change
may not fix the case triggered by sy
---truncated---(CVE-2024-26792)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here&apos;s the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth &lt;HASH:3b4a6&gt;]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth &lt;HASH:3b4a 6&gt;]
hci_error_reset+0x4f/0xa4 [bluetooth &lt;HASH:3b4a 6&gt;]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash.(CVE-2024-26801)
In the Linux kernel, the following vulnerability has been resolved:
net: ip_tunnel: prevent perpetual headroom growth
syzkaller triggered following kasan splat:
BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191
[..]
kasan_report+0xda/0x110 mm/kasan/report.c:588
__skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline]
___skb_get_hash net/core/flow_dissector.c:1791 [inline]
__skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856
skb_get_hash include/linux/skbuff.h:1556 [inline]
ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748
ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592
...
ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
..
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831
ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
...
The splat occurs because skb-&gt;data points past skb-&gt;head allocated area.
This is because neigh layer does:
__skb_pull(skb, skb_network_offset(skb));
... but skb_network_offset() returns a negative offset and __skb_pull()
arg is unsigned. IOW, we skb-&gt;data gets &quot;adjusted&quot; by a huge value.
The negative value is returned because skb-&gt;head and skb-&gt;data distance is
more than 64k and skb-&gt;network_header (u16) has wrapped around.
The bug is in the ip_tunnel infrastructure, which can cause
dev-&gt;needed_headroom to increment ad infinitum.
The syzkaller reproducer consists of packets getting routed via a gre
tunnel, and route of gre encapsulated packets pointing at another (ipip)
tunnel. The ipip encapsulation finds gre0 as next output device.
This results in the following pattern:
1). First packet is to be sent out via gre0.
Route lookup found an output device, ipip0.
2).
ip_tunnel_xmit for gre0 bumps gre0-&gt;needed_headroom based on the future
output device, rt.dev-&gt;needed_headroom (ipip0).
3).
ip output / start_xmit moves skb on to ipip0. which runs the same
code path again (xmit recursion).
4).
Routing step for the post-gre0-encap packet finds gre0 as output device
to use for ipip0 encapsulated packet.
tunl0-&gt;needed_headroom is then incremented based on the (already bumped)
gre0 device headroom.
This repeats for every future packet:
gre0-&gt;needed_headroom gets inflated because previous packets&apos; ipip0 step
incremented rt-&gt;dev (gre0) headroom, and ipip0 incremented because gre0
needed_headroom was increased.
For each subsequent packet, gre/ipip0-&gt;needed_headroom grows until
post-expand-head reallocations result in a skb-&gt;head/data distance of
more than 64k.
Once that happens, skb-&gt;network_header (u16) wraps around when
pskb_expand_head tries to make sure that skb_network_offset() is unchanged
after the headroom expansion/reallocation.
After this skb_network_offset(skb) returns a different (and negative)
result post headroom expansion.
The next trip to neigh layer (or anything else that would __skb_pull the
network header) makes skb-&gt;data point to a memory location outside
skb-&gt;head area.
v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to
prevent perpetual increase instead of dropping the headroom increment
completely.(CVE-2024-26804)
In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter
syzbot reported the following uninit-value access issue [1]:
netlink_to_full_skb() creates a new `skb` and puts the `skb-&gt;data`
passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data
size is specified as `len` and passed to skb_put_data(). This `len`
is based on `skb-&gt;end` that is not data offset but buffer offset. The
`skb-&gt;end` contains data and tailroom. Since the tailroom is not
initialized when the new `skb` created, KMSAN detects uninitialized
memory area when copying the data.
This patch resolved this issue by correct the len from `skb-&gt;end` to
`skb-&gt;len`, which is the actual data offset.
BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
copy_to_iter include/linux/uio.h:197 [inline]
simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:532
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:420
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546
skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline]
packet_recvmsg+0xd9c/0x2000 net/packet/af_packet.c:3482
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg net/socket.c:1066 [inline]
sock_read_iter+0x467/0x580 net/socket.c:1136
call_read_iter include/linux/fs.h:2014 [inline]
new_sync_read fs/read_write.c:389 [inline]
vfs_read+0x8f6/0xe00 fs/read_write.c:470
ksys_read+0x20f/0x4c0 fs/read_write.c:613
__do_sys_read fs/read_write.c:623 [inline]
__se_sys_read fs/read_write.c:621 [inline]
__x64_sys_read+0x93/0xd0 fs/read_write.c:621
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was stored to memory at:
skb_put_data include/linux/skbuff.h:2622 [inline]
netlink_to_full_skb net/netlink/af_netlink.c:181 [inline]
__netlink_deliver_tap_skb net/netlink/af_netlink.c:298 [inline]
__netlink_deliver_tap+0x5be/0xc90 net/netlink/af_netlink.c:325
netlink_deliver_tap net/netlink/af_netlink.c:338 [inline]
netlink_deliver_tap_kernel net/netlink/af_netlink.c:347 [inline]
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x10f1/0x1250 net/netlink/af_netlink.c:1368
netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
free_pages_prepare mm/page_alloc.c:1087 [inline]
free_unref_page_prepare+0xb0/0xa40 mm/page_alloc.c:2347
free_unref_page_list+0xeb/0x1100 mm/page_alloc.c:2533
release_pages+0x23d3/0x2410 mm/swap.c:1042
free_pages_and_swap_cache+0xd9/0xf0 mm/swap_state.c:316
tlb_batch_pages
---truncated---(CVE-2024-26805)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain
Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER
event is reported, otherwise a stale reference to netdevice remains in
the hook list.(CVE-2024-26808)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: release elements in clone only from destroy path
Clone already always provides a current view of the lookup table, use it
to destroy the set, otherwise it is possible to destroy elements twice.
This fix requires:
212ed75dc5fb (&quot;netfilter: nf_tables: integrate pipapo into commit protocol&quot;)
which came after:
9827a0e6e23b (&quot;netfilter: nft_set_pipapo: release elements in clone from abort path&quot;).(CVE-2024-26809)
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate payload size in ipc response
If installing malicious ksmbd-tools, ksmbd.mountd can return invalid ipc
response to ksmbd kernel server. ksmbd should validate payload size of
ipc response from ksmbd.mountd to avoid memory overrun or
slab-out-of-bounds. This patch validate 3 ipc response that has payload.(CVE-2024-26811)
In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Create persistent INTx handler
A vulnerability exists where the eventfd for INTx signaling can be
deconfigured, which unregisters the IRQ handler but still allows
eventfds to be signaled with a NULL context through the SET_IRQS ioctl
or through unmask irqfd if the device interrupt is pending.
Ideally this could be solved with some additional locking; the igate
mutex serializes the ioctl and config space accesses, and the interrupt
handler is unregistered relative to the trigger, but the irqfd path
runs asynchronous to those. The igate mutex cannot be acquired from the
atomic context of the eventfd wake function. Disabling the irqfd
relative to the eventfd registration is potentially incompatible with
existing userspace.
As a result, the solution implemented here moves configuration of the
INTx interrupt handler to track the lifetime of the INTx context object
and irq_type configuration, rather than registration of a particular
trigger eventfd. Synchronization is added between the ioctl path and
eventfd_signal() wrapper such that the eventfd trigger can be
dynamically updated relative to in-flight interrupts or irqfd callbacks.(CVE-2024-26812)
In the Linux kernel, the following vulnerability has been resolved:
vfio/fsl-mc: Block calling interrupt handler without trigger
The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is
initially NULL and may become NULL if the user sets the trigger
eventfd to -1. The interrupt handler itself is guaranteed that
trigger is always valid between request_irq() and free_irq(), but
the loopback testing mechanisms to invoke the handler function
need to test the trigger. The triggering and setting ioctl paths
both make use of igate and are therefore mutually exclusive.
The vfio-fsl-mc driver does not make use of irqfds, nor does it
support any sort of masking operations, therefore unlike vfio-pci
and vfio-platform, the flow can remain essentially unchanged.(CVE-2024-26814)
In the Linux kernel, the following vulnerability has been resolved:
amdkfd: use calloc instead of kzalloc to avoid integer overflow
This uses calloc instead of doing the multiplication which might
overflow.(CVE-2024-26817)
In the Linux kernel, the following vulnerability has been resolved:
cifs: fix underflow in parse_server_interfaces()
In this loop, we step through the buffer and after each item we check
if the size_left is greater than the minimum size we need. However,
the problem is that &quot;bytes_left&quot; is type ssize_t while sizeof() is type
size_t. That means that because of type promotion, the comparison is
done as an unsigned and if we have negative bytes left the loop
continues instead of ending.(CVE-2024-26828)
In the Linux kernel, the following vulnerability has been resolved:
media: ir_toy: fix a memleak in irtoy_tx
When irtoy_command fails, buf should be freed since it is allocated by
irtoy_tx, or there is a memleak.(CVE-2024-26829)
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix a memleak in init_credit_return
When dma_alloc_coherent fails to allocate dd-&gt;cr_base[i].va,
init_credit_return should deallocate dd-&gt;cr_base and
dd-&gt;cr_base[i] that allocated before. Or those resources
would be never freed and a memleak is triggered.(CVE-2024-26839)
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix memory leak in cachefiles_add_cache()
The following memory leak was reported after unbinding /dev/cachefiles:
==================================================================
unreferenced object 0xffff9b674176e3c0 (size 192):
comm &quot;cachefilesd2&quot;, pid 680, jiffies 4294881224
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc ea38a44b):
[&lt;ffffffff8eb8a1a5&gt;] kmem_cache_alloc+0x2d5/0x370
[&lt;ffffffff8e917f86&gt;] prepare_creds+0x26/0x2e0
[&lt;ffffffffc002eeef&gt;] cachefiles_determine_cache_security+0x1f/0x120
[&lt;ffffffffc00243ec&gt;] cachefiles_add_cache+0x13c/0x3a0
[&lt;ffffffffc0025216&gt;] cachefiles_daemon_write+0x146/0x1c0
[&lt;ffffffff8ebc4a3b&gt;] vfs_write+0xcb/0x520
[&lt;ffffffff8ebc5069&gt;] ksys_write+0x69/0xf0
[&lt;ffffffff8f6d4662&gt;] do_syscall_64+0x72/0x140
[&lt;ffffffff8f8000aa&gt;] entry_SYSCALL_64_after_hwframe+0x6e/0x76
==================================================================
Put the reference count of cache_cred in cachefiles_daemon_unbind() to
fix the problem. And also put cache_cred in cachefiles_add_cache() error
branch to avoid memory leaks.(CVE-2024-26840)
In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: Fix potential overflow of soft-reserved region size
md_size will have been narrowed if we have &gt;= 4GB worth of pages in a
soft-reserved region.(CVE-2024-26843)
In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing &apos;left over IDs&apos;. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too.(CVE-2024-26846)
In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: avoid possible UAF in ip6_route_mpath_notify()
syzbot found another use-after-free in ip6_route_mpath_notify() [1]
Commit f7225172f25a (&quot;net/ipv6: prevent use after free in
ip6_route_mpath_notify&quot;) was not able to fix the root cause.
We need to defer the fib6_info_release() calls after
ip6_route_mpath_notify(), in the cleanup phase.
[1]
BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0
Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037
CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x167/0x540 mm/kasan/report.c:488
kasan_report+0x142/0x180 mm/kasan/report.c:601
rt6_fill_node+0x1460/0x1ac0
inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184
ip6_route_mpath_notify net/ipv6/route.c:5198 [inline]
ip6_route_multipath_add net/ipv6/route.c:5404 [inline]
inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f73dd87dda9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9
RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005
RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858
&lt;/TASK&gt;
Allocated by task 23037:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:372 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3981 [inline]
__kmalloc+0x22e/0x490 mm/slub.c:3994
kmalloc include/linux/slab.h:594 [inline]
kzalloc include/linux/slab.h:711 [inline]
fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155
ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758
ip6_route_multipath_add net/ipv6/route.c:5298 [inline]
inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
Freed by task 16:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640
poison_slab_object+0xa6/0xe0 m
---truncated---(CVE-2024-26852)
In the Linux kernel, the following vulnerability has been resolved:
net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink()
The function ice_bridge_setlink() may encounter a NULL pointer dereference
if nlmsg_find_attr() returns NULL and br_spec is dereferenced subsequently
in nla_for_each_nested(). To address this issue, add a check to ensure that
br_spec is not NULL before proceeding with the nested attribute iteration.(CVE-2024-26855)
In the Linux kernel, the following vulnerability has been resolved:
net/bnx2x: Prevent access to a freed page in page_pool
Fix race condition leading to system crash during EEH error handling
During EEH error recovery, the bnx2x driver&apos;s transmit timeout logic
could cause a race condition when handling reset tasks. The
bnx2x_tx_timeout() schedules reset tasks via bnx2x_sp_rtnl_task(),
which ultimately leads to bnx2x_nic_unload(). In bnx2x_nic_unload()
SGEs are freed using bnx2x_free_rx_sge_range(). However, this could
overlap with the EEH driver&apos;s attempt to reset the device using
bnx2x_io_slot_reset(), which also tries to free SGEs. This race
condition can result in system crashes due to accessing freed memory
locations in bnx2x_free_rx_sge()
799 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
800 struct bnx2x_fastpath *fp, u16 index)
801 {
802 struct sw_rx_page *sw_buf = &amp;fp-&gt;rx_page_ring[index];
803 struct page *page = sw_buf-&gt;page;
....
where sw_buf was set to NULL after the call to dma_unmap_page()
by the preceding thread.
EEH: Beginning: &apos;slot_reset&apos;
PCI 0011:01:00.0#10000: EEH: Invoking bnx2x-&gt;slot_reset()
bnx2x: [bnx2x_io_slot_reset:14228(eth1)]IO slot reset initializing...
bnx2x 0011:01:00.0: enabling device (0140 -&gt; 0142)
bnx2x: [bnx2x_io_slot_reset:14244(eth1)]IO slot reset --&gt; driver unload
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc0080000025065fc
Oops: Kernel access of bad area, sig: 11 [#1]
.....
Call Trace:
[c000000003c67a20] [c00800000250658c] bnx2x_io_slot_reset+0x204/0x610 [bnx2x] (unreliable)
[c000000003c67af0] [c0000000000518a8] eeh_report_reset+0xb8/0xf0
[c000000003c67b60] [c000000000052130] eeh_pe_report+0x180/0x550
[c000000003c67c70] [c00000000005318c] eeh_handle_normal_event+0x84c/0xa60
[c000000003c67d50] [c000000000053a84] eeh_event_handler+0xf4/0x170
[c000000003c67da0] [c000000000194c58] kthread+0x1c8/0x1d0
[c000000003c67e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64
To solve this issue, we need to verify page pool allocations before
freeing.(CVE-2024-26859)
In the Linux kernel, the following vulnerability has been resolved:
packet: annotate data-races around ignore_outgoing
ignore_outgoing is read locklessly from dev_queue_xmit_nit()
and packet_getsockopt()
Add appropriate READ_ONCE()/WRITE_ONCE() annotations.
syzbot reported:
BUG: KCSAN: data-race in dev_queue_xmit_nit / packet_setsockopt
write to 0xffff888107804542 of 1 bytes by task 22618 on cpu 0:
packet_setsockopt+0xd83/0xfd0 net/packet/af_packet.c:4003
do_sock_setsockopt net/socket.c:2311 [inline]
__sys_setsockopt+0x1d8/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2340
do_syscall_64+0xd3/0x1d0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
read to 0xffff888107804542 of 1 bytes by task 27 on cpu 1:
dev_queue_xmit_nit+0x82/0x620 net/core/dev.c:2248
xmit_one net/core/dev.c:3527 [inline]
dev_hard_start_xmit+0xcc/0x3f0 net/core/dev.c:3547
__dev_queue_xmit+0xf24/0x1dd0 net/core/dev.c:4335
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
batadv_send_skb_packet+0x264/0x300 net/batman-adv/send.c:108
batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127
batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:392 [inline]
batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:420 [inline]
batadv_iv_send_outstanding_bat_ogm_packet+0x3f0/0x4b0 net/batman-adv/bat_iv_ogm.c:1700
process_one_work kernel/workqueue.c:3254 [inline]
process_scheduled_works+0x465/0x990 kernel/workqueue.c:3335
worker_thread+0x526/0x730 kernel/workqueue.c:3416
kthread+0x1d1/0x210 kernel/kthread.c:388
ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
value changed: 0x00 -&gt; 0x01
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 27 Comm: kworker/u8:1 Tainted: G W 6.8.0-syzkaller-08073-g480e035fc4c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet(CVE-2024-26862)
In the Linux kernel, the following vulnerability has been resolved:
hsr: Fix uninit-value access in hsr_get_node()
KMSAN reported the following uninit-value access issue [1]:
=====================================================
BUG: KMSAN: uninit-value in hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
fill_frame_info net/hsr/hsr_forward.c:577 [inline]
hsr_forward_skb+0xe12/0x30e0 net/hsr/hsr_forward.c:615
hsr_dev_xmit+0x1a1/0x270 net/hsr/hsr_device.c:223
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560
__alloc_skb+0x318/0x740 net/core/skbuff.c:651
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787
packet_alloc_skb net/packet/af_packet.c:2936 [inline]
packet_snd net/packet/af_packet.c:3030 [inline]
packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
CPU: 1 PID: 5033 Comm: syz-executor334 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
=====================================================
If the packet type ID field in the Ethernet header is either ETH_P_PRP or
ETH_P_HSR, but it is not followed by an HSR tag, hsr_get_skb_sequence_nr()
reads an invalid value as a sequence number. This causes the above issue.
This patch fixes the issue by returning NULL if the Ethernet header is not
followed by an HSR tag.(CVE-2024-26863)
In the Linux kernel, the following vulnerability has been resolved:
rds: tcp: Fix use-after-free of net in reqsk_timer_handler().
syzkaller reported a warning of netns tracker [0] followed by KASAN
splat [1] and another ref tracker warning [1].
syzkaller could not find a repro, but in the log, the only suspicious
sequence was as follows:
18:26:22 executing program 1:
r0 = socket$inet6_mptcp(0xa, 0x1, 0x106)
...
connect$inet6(r0, &amp;(0x7f0000000080)={0xa, 0x4001, 0x0, @loopback}, 0x1c) (async)
The notable thing here is 0x4001 in connect(), which is RDS_TCP_PORT.
So, the scenario would be:
1. unshare(CLONE_NEWNET) creates a per netns tcp listener in
rds_tcp_listen_init().
2. syz-executor connect()s to it and creates a reqsk.
3. syz-executor exit()s immediately.
4. netns is dismantled. [0]
5. reqsk timer is fired, and UAF happens while freeing reqsk. [1]
6. listener is freed after RCU grace period. [2]
Basically, reqsk assumes that the listener guarantees netns safety
until all reqsk timers are expired by holding the listener&apos;s refcount.
However, this was not the case for kernel sockets.
Commit 740ea3c4a0b2 (&quot;tcp: Clean up kernel listener&apos;s reqsk in
inet_twsk_purge()&quot;) fixed this issue only for per-netns ehash.
Let&apos;s apply the same fix for the global ehash.
[0]:
ref_tracker: net notrefcnt@0000000065449cc3 has 1/1 users at
sk_alloc (./include/net/net_namespace.h:337 net/core/sock.c:2146)
inet6_create (net/ipv6/af_inet6.c:192 net/ipv6/af_inet6.c:119)
__sock_create (net/socket.c:1572)
rds_tcp_listen_init (net/rds/tcp_listen.c:279)
rds_tcp_init_net (net/rds/tcp.c:577)
ops_init (net/core/net_namespace.c:137)
setup_net (net/core/net_namespace.c:340)
copy_net_ns (net/core/net_namespace.c:497)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_namespaces (kernel/nsproxy.c:228 (discriminator 4))
ksys_unshare (kernel/fork.c:3429)
__x64_sys_unshare (kernel/fork.c:3496)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
...
WARNING: CPU: 0 PID: 27 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179)
[1]:
BUG: KASAN: slab-use-after-free in inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966)
Read of size 8 at addr ffff88801b370400 by task swapper/0/0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
&lt;IRQ&gt;
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1))
print_report (mm/kasan/report.c:378 mm/kasan/report.c:488)
kasan_report (mm/kasan/report.c:603)
inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966)
reqsk_timer_handler (net/ipv4/inet_connection_sock.c:979 net/ipv4/inet_connection_sock.c:1092)
call_timer_fn (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/timer.h:127 kernel/time/timer.c:1701)
__run_timers.part.0 (kernel/time/timer.c:1752 kernel/time/timer.c:2038)
run_timer_softirq (kernel/time/timer.c:2053)
__do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554)
irq_exit_rcu (kernel/softirq.c:427 kernel/softirq.c:632 kernel/softirq.c:644)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1076 (discriminator 14))
&lt;/IRQ&gt;
Allocated by task 258 on cpu 0 at 83.612050s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
__kasan_slab_alloc (mm/kasan/common.c:343)
kmem_cache_alloc (mm/slub.c:3813 mm/slub.c:3860 mm/slub.c:3867)
copy_net_ns (./include/linux/slab.h:701 net/core/net_namespace.c:421 net/core/net_namespace.c:480)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_name
---truncated---(CVE-2024-26865)
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to truncate meta inode pages forcely
Below race case can cause data corruption:
Thread A GC thread
- gc_data_segment
- ra_data_block
- locked meta_inode page
- f2fs_inplace_write_data
- invalidate_mapping_pages
: fail to invalidate meta_inode page
due to lock failure or dirty|writeback
status
- f2fs_submit_page_bio
: write last dirty data to old blkaddr
- move_data_block
- load old data from meta_inode page
- f2fs_submit_page_write
: write old data to new blkaddr
Because invalidate_mapping_pages() will skip invalidating page which
has unclear status including locked, dirty, writeback and so on, so
we need to use truncate_inode_pages_range() instead of
invalidate_mapping_pages() to make sure meta_inode page will be dropped.(CVE-2024-26869)
In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102
A call to listxattr() with a buffer size = 0 returns the actual
size of the buffer needed for a subsequent call. When size &gt; 0,
nfs4_listxattr() does not return an error because either
generic_listxattr() or nfs4_listxattr_nfs4_label() consumes
exactly all the bytes then size is 0 when calling
nfs4_listxattr_nfs4_user() which then triggers the following
kernel BUG:
[ 99.403778] kernel BUG at mm/usercopy.c:102!
[ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1
[ 99.415827] Call trace:
[ 99.415985] usercopy_abort+0x70/0xa0
[ 99.416227] __check_heap_object+0x134/0x158
[ 99.416505] check_heap_object+0x150/0x188
[ 99.416696] __check_object_size.part.0+0x78/0x168
[ 99.416886] __check_object_size+0x28/0x40
[ 99.417078] listxattr+0x8c/0x120
[ 99.417252] path_listxattr+0x78/0xe0
[ 99.417476] __arm64_sys_listxattr+0x28/0x40
[ 99.417723] invoke_syscall+0x78/0x100
[ 99.417929] el0_svc_common.constprop.0+0x48/0xf0
[ 99.418186] do_el0_svc+0x24/0x38
[ 99.418376] el0_svc+0x3c/0x110
[ 99.418554] el0t_64_sync_handler+0x120/0x130
[ 99.418788] el0t_64_sync+0x194/0x198
[ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000)
Issue is reproduced when generic_listxattr() returns &apos;system.nfs4_acl&apos;,
thus calling lisxattr() with size = 16 will trigger the bug.
Add check on nfs4_listxattr() to return ERANGE error when it is
called with size &gt; 0 and the return value is greater than size.(CVE-2024-26870)
In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Do not register event handler until srpt device is fully setup
Upon rare occasions, KASAN reports a use-after-free Write
in srpt_refresh_port().
This seems to be because an event handler is registered before the
srpt device is fully setup and a race condition upon error may leave a
partially setup event handler in place.
Instead, only register the event handler after srpt device initialization
is complete.(CVE-2024-26872)
In the Linux kernel, the following vulnerability has been resolved:
media: pvrusb2: fix uaf in pvr2_context_set_notify
[Syzbot reported]
BUG: KASAN: slab-use-after-free in pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35
Read of size 4 at addr ffff888113aeb0d8 by task kworker/1:1/26
CPU: 1 PID: 26 Comm: kworker/1:1 Not tainted 6.8.0-rc1-syzkaller-00046-gf1a27f081c1f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: usb_hub_wq hub_event
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc4/0x620 mm/kasan/report.c:488
kasan_report+0xda/0x110 mm/kasan/report.c:601
pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35
pvr2_context_notify drivers/media/usb/pvrusb2/pvrusb2-context.c:95 [inline]
pvr2_context_disconnect+0x94/0xb0 drivers/media/usb/pvrusb2/pvrusb2-context.c:272
Freed by task 906:
kasan_save_stack+0x33/0x50 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3f/0x60 mm/kasan/generic.c:640
poison_slab_object mm/kasan/common.c:241 [inline]
__kasan_slab_free+0x106/0x1b0 mm/kasan/common.c:257
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2121 [inline]
slab_free mm/slub.c:4299 [inline]
kfree+0x105/0x340 mm/slub.c:4409
pvr2_context_check drivers/media/usb/pvrusb2/pvrusb2-context.c:137 [inline]
pvr2_context_thread_func+0x69d/0x960 drivers/media/usb/pvrusb2/pvrusb2-context.c:158
[Analyze]
Task A set disconnect_flag = !0, which resulted in Task B&apos;s condition being met
and releasing mp, leading to this issue.
[Fix]
Place the disconnect_flag assignment operation after all code in pvr2_context_disconnect()
to avoid this issue.(CVE-2024-26875)
In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&amp;dquots[cnt]-&gt;dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode&apos;s quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let&apos;s fix it by using a temporary pointer to avoid this issue.(CVE-2024-26878)
In the Linux kernel, the following vulnerability has been resolved:
dm: call the resume method on internal suspend
There is this reported crash when experimenting with the lvm2 testsuite.
The list corruption is caused by the fact that the postsuspend and resume
methods were not paired correctly; there were two consecutive calls to the
origin_postsuspend function. The second call attempts to remove the
&quot;hash_list&quot; entry from a list, while it was already removed by the first
call.
Fix __dm_internal_resume so that it calls the preresume and resume
methods of the table&apos;s targets.
If a preresume method of some target fails, we are in a tricky situation.
We can&apos;t return an error because dm_internal_resume isn&apos;t supposed to
return errors. We can&apos;t return success, because then the &quot;resume&quot; and
&quot;postsuspend&quot; methods would not be paired correctly. So, we set the
DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace
tools, but it won&apos;t cause a kernel crash.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:56!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0
&lt;snip&gt;
RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282
RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff
RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058
R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001
R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0
FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0
Call Trace:
&lt;TASK&gt;
? die+0x2d/0x80
? do_trap+0xeb/0xf0
? __list_del_entry_valid_or_report+0x77/0xc0
? do_error_trap+0x60/0x80
? __list_del_entry_valid_or_report+0x77/0xc0
? exc_invalid_op+0x49/0x60
? __list_del_entry_valid_or_report+0x77/0xc0
? asm_exc_invalid_op+0x16/0x20
? table_deps+0x1b0/0x1b0 [dm_mod]
? __list_del_entry_valid_or_report+0x77/0xc0
origin_postsuspend+0x1a/0x50 [dm_snapshot]
dm_table_postsuspend_targets+0x34/0x50 [dm_mod]
dm_suspend+0xd8/0xf0 [dm_mod]
dev_suspend+0x1f2/0x2f0 [dm_mod]
? table_deps+0x1b0/0x1b0 [dm_mod]
ctl_ioctl+0x300/0x5f0 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x10 [dm_mod]
__x64_compat_sys_ioctl+0x104/0x170
do_syscall_64+0x184/0x1b0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0xf7e6aead
&lt;snip&gt;
---[ end trace 0000000000000000 ]---(CVE-2024-26880)
In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix double free in SMC transport cleanup path
When the generic SCMI code tears down a channel, it calls the chan_free
callback function, defined by each transport. Since multiple protocols
might share the same transport_info member, chan_free() might want to
clean up the same member multiple times within the given SCMI transport
implementation. In this case, it is SMC transport. This will lead to a NULL
pointer dereference at the second time:
| scmi_protocol scmi_dev.1: Enabled polling mode TX channel - prot_id:16
| arm-scmi firmware:scmi: SCMI Notifications - Core Enabled.
| arm-scmi firmware:scmi: unable to communicate with SCMI
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000096000004
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| Data abort info:
| ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
| CM = 0, WnR = 0, TnD = 0, TagAccess = 0
| GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881ef8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 4 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-00124-g455ef3d016c9-dirty #793
| Hardware name: FVP Base RevC (DT)
| pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
| pc : smc_chan_free+0x3c/0x6c
| lr : smc_chan_free+0x3c/0x6c
| Call trace:
| smc_chan_free+0x3c/0x6c
| idr_for_each+0x68/0xf8
| scmi_cleanup_channels.isra.0+0x2c/0x58
| scmi_probe+0x434/0x734
| platform_probe+0x68/0xd8
| really_probe+0x110/0x27c
| __driver_probe_device+0x78/0x12c
| driver_probe_device+0x3c/0x118
| __driver_attach+0x74/0x128
| bus_for_each_dev+0x78/0xe0
| driver_attach+0x24/0x30
| bus_add_driver+0xe4/0x1e8
| driver_register+0x60/0x128
| __platform_driver_register+0x28/0x34
| scmi_driver_init+0x84/0xc0
| do_one_initcall+0x78/0x33c
| kernel_init_freeable+0x2b8/0x51c
| kernel_init+0x24/0x130
| ret_from_fork+0x10/0x20
| Code: f0004701 910a0021 aa1403e5 97b91c70 (b9400280)
| ---[ end trace 0000000000000000 ]---
Simply check for the struct pointer being NULL before trying to access
its members, to avoid this situation.
This was found when a transport doesn&apos;t really work (for instance no SMC
service), the probe routines then tries to clean up, and triggers a crash.(CVE-2024-26893)
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: prevent use-after-free on vif when cleaning up all interfaces
wilc_netdev_cleanup currently triggers a KASAN warning, which can be
observed on interface registration error path, or simply by
removing the module/unbinding device from driver:
echo spi0.1 &gt; /sys/bus/spi/drivers/wilc1000_spi/unbind
==================================================================
BUG: KASAN: slab-use-after-free in wilc_netdev_cleanup+0x508/0x5cc
Read of size 4 at addr c54d1ce8 by task sh/86
CPU: 0 PID: 86 Comm: sh Not tainted 6.8.0-rc1+ #117
Hardware name: Atmel SAMA5
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x34/0x58
dump_stack_lvl from print_report+0x154/0x500
print_report from kasan_report+0xac/0xd8
kasan_report from wilc_netdev_cleanup+0x508/0x5cc
wilc_netdev_cleanup from wilc_bus_remove+0xc8/0xec
wilc_bus_remove from spi_remove+0x8c/0xac
spi_remove from device_release_driver_internal+0x434/0x5f8
device_release_driver_internal from unbind_store+0xbc/0x108
unbind_store from kernfs_fop_write_iter+0x398/0x584
kernfs_fop_write_iter from vfs_write+0x728/0xf88
vfs_write from ksys_write+0x110/0x1e4
ksys_write from ret_fast_syscall+0x0/0x1c
[...]
Allocated by task 1:
kasan_save_track+0x30/0x5c
__kasan_kmalloc+0x8c/0x94
__kmalloc_node+0x1cc/0x3e4
kvmalloc_node+0x48/0x180
alloc_netdev_mqs+0x68/0x11dc
alloc_etherdev_mqs+0x28/0x34
wilc_netdev_ifc_init+0x34/0x8ec
wilc_cfg80211_init+0x690/0x910
wilc_bus_probe+0xe0/0x4a0
spi_probe+0x158/0x1b0
really_probe+0x270/0xdf4
__driver_probe_device+0x1dc/0x580
driver_probe_device+0x60/0x140
__driver_attach+0x228/0x5d4
bus_for_each_dev+0x13c/0x1a8
bus_add_driver+0x2a0/0x608
driver_register+0x24c/0x578
do_one_initcall+0x180/0x310
kernel_init_freeable+0x424/0x484
kernel_init+0x20/0x148
ret_from_fork+0x14/0x28
Freed by task 86:
kasan_save_track+0x30/0x5c
kasan_save_free_info+0x38/0x58
__kasan_slab_free+0xe4/0x140
kfree+0xb0/0x238
device_release+0xc0/0x2a8
kobject_put+0x1d4/0x46c
netdev_run_todo+0x8fc/0x11d0
wilc_netdev_cleanup+0x1e4/0x5cc
wilc_bus_remove+0xc8/0xec
spi_remove+0x8c/0xac
device_release_driver_internal+0x434/0x5f8
unbind_store+0xbc/0x108
kernfs_fop_write_iter+0x398/0x584
vfs_write+0x728/0xf88
ksys_write+0x110/0x1e4
ret_fast_syscall+0x0/0x1c
[...]
David Mosberger-Tan initial investigation [1] showed that this
use-after-free is due to netdevice unregistration during vif list
traversal. When unregistering a net device, since the needs_free_netdev has
been set to true during registration, the netdevice object is also freed,
and as a consequence, the corresponding vif object too, since it is
attached to it as private netdevice data. The next occurrence of the loop
then tries to access freed vif pointer to the list to move forward in the
list.
Fix this use-after-free thanks to two mechanisms:
- navigate in the list with list_for_each_entry_safe, which allows to
safely modify the list as we go through each element. For each element,
remove it from the list with list_del_rcu
- make sure to wait for RCU grace period end after each vif removal to make
sure it is safe to free the corresponding vif too (through
unregister_netdev)
Since we are in a RCU &quot;modifier&quot; path (not a &quot;reader&quot; path), and because
such path is expected not to be concurrent to any other modifier (we are
using the vif_mutex lock), we do not need to use RCU list API, that&apos;s why
we can benefit from list_for_each_entry_safe.
[1] https://lore.kernel.org/linux-wireless/ab077dbe58b1ea5de0a3b2ca21f275a07af967d2.camel@egauge.net/(CVE-2024-26895)
In the Linux kernel, the following vulnerability has been resolved:
wifi: wfx: fix memory leak when starting AP
Kmemleak reported this error:
unreferenced object 0xd73d1180 (size 184):
comm &quot;wpa_supplicant&quot;, pid 1559, jiffies 13006305 (age 964.245s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................
backtrace:
[&lt;5ca11420&gt;] kmem_cache_alloc+0x20c/0x5ac
[&lt;127bdd74&gt;] __alloc_skb+0x144/0x170
[&lt;fb8a5e38&gt;] __netdev_alloc_skb+0x50/0x180
[&lt;0f9fa1d5&gt;] __ieee80211_beacon_get+0x290/0x4d4 [mac80211]
[&lt;7accd02d&gt;] ieee80211_beacon_get_tim+0x54/0x18c [mac80211]
[&lt;41e25cc3&gt;] wfx_start_ap+0xc8/0x234 [wfx]
[&lt;93a70356&gt;] ieee80211_start_ap+0x404/0x6b4 [mac80211]
[&lt;a4a661cd&gt;] nl80211_start_ap+0x76c/0x9e0 [cfg80211]
[&lt;47bd8b68&gt;] genl_rcv_msg+0x198/0x378
[&lt;453ef796&gt;] netlink_rcv_skb+0xd0/0x130
[&lt;6b7c977a&gt;] genl_rcv+0x34/0x44
[&lt;66b2d04d&gt;] netlink_unicast+0x1b4/0x258
[&lt;f965b9b6&gt;] netlink_sendmsg+0x1e8/0x428
[&lt;aadb8231&gt;] ____sys_sendmsg+0x1e0/0x274
[&lt;d2b5212d&gt;] ___sys_sendmsg+0x80/0xb4
[&lt;69954f45&gt;] __sys_sendmsg+0x64/0xa8
unreferenced object 0xce087000 (size 1024):
comm &quot;wpa_supplicant&quot;, pid 1559, jiffies 13006305 (age 964.246s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............
backtrace:
[&lt;9a993714&gt;] __kmalloc_track_caller+0x230/0x600
[&lt;f83ea192&gt;] kmalloc_reserve.constprop.0+0x30/0x74
[&lt;a2c61343&gt;] __alloc_skb+0xa0/0x170
[&lt;fb8a5e38&gt;] __netdev_alloc_skb+0x50/0x180
[&lt;0f9fa1d5&gt;] __ieee80211_beacon_get+0x290/0x4d4 [mac80211]
[&lt;7accd02d&gt;] ieee80211_beacon_get_tim+0x54/0x18c [mac80211]
[&lt;41e25cc3&gt;] wfx_start_ap+0xc8/0x234 [wfx]
[&lt;93a70356&gt;] ieee80211_start_ap+0x404/0x6b4 [mac80211]
[&lt;a4a661cd&gt;] nl80211_start_ap+0x76c/0x9e0 [cfg80211]
[&lt;47bd8b68&gt;] genl_rcv_msg+0x198/0x378
[&lt;453ef796&gt;] netlink_rcv_skb+0xd0/0x130
[&lt;6b7c977a&gt;] genl_rcv+0x34/0x44
[&lt;66b2d04d&gt;] netlink_unicast+0x1b4/0x258
[&lt;f965b9b6&gt;] netlink_sendmsg+0x1e8/0x428
[&lt;aadb8231&gt;] ____sys_sendmsg+0x1e0/0x274
[&lt;d2b5212d&gt;] ___sys_sendmsg+0x80/0xb4
However, since the kernel is build optimized, it seems the stack is not
accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue
is obvious in this function: memory allocated by ieee80211_beacon_get()
is never released. Fixing this leak makes kmemleak happy.(CVE-2024-26896)
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete
The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data
structures have been fully initialised by the time it runs. However, because of
the order in which things are initialised, this is not guaranteed to be the
case, because the device is exposed to the USB subsystem before the ath9k driver
initialisation is completed.
We already committed a partial fix for this in commit:
8b3046abc99e (&quot;ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()&quot;)
However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event
tasklet, pairing it with an &quot;initialisation complete&quot; bit in the TX struct. It
seems syzbot managed to trigger the race for one of the other commands as well,
so let&apos;s just move the existing synchronisation bit to cover the whole
tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside
ath9k_tx_init()).(CVE-2024-26897)
In the Linux kernel, the following vulnerability has been resolved:
scsi: Revert &quot;scsi: fcoe: Fix potential deadlock on &amp;fip-&gt;ctlr_lock&quot;
This reverts commit 1a1975551943f681772720f639ff42fbaa746212.
This commit causes interrupts to be lost for FCoE devices, since it changed
sping locks from &quot;bh&quot; to &quot;irqsave&quot;.
Instead, a work queue should be used, and will be addressed in a separate
commit.(CVE-2024-26917)
In the Linux kernel, the following vulnerability has been resolved:
inet: inet_defrag: prevent sk release while still in use
ip_local_out() and other functions can pass skb-&gt;sk as function argument.
If the skb is a fragment and reassembly happens before such function call
returns, the sk must not be released.
This affects skb fragments reassembled via netfilter or similar
modules, e.g. openvswitch or ct_act.c, when run as part of tx pipeline.
Eric Dumazet made an initial analysis of this bug. Quoting Eric:
Calling ip_defrag() in output path is also implying skb_orphan(),
which is buggy because output path relies on sk not disappearing.
A relevant old patch about the issue was :
8282f27449bf (&quot;inet: frag: Always orphan skbs inside ip_defrag()&quot;)
[..]
net/ipv4/ip_output.c depends on skb-&gt;sk being set, and probably to an
inet socket, not an arbitrary one.
If we orphan the packet in ipvlan, then downstream things like FQ
packet scheduler will not work properly.
We need to change ip_defrag() to only use skb_orphan() when really
needed, ie whenever frag_list is going to be used.
Eric suggested to stash sk in fragment queue and made an initial patch.
However there is a problem with this:
If skb is refragmented again right after, ip_do_fragment() will copy
head-&gt;sk to the new fragments, and sets up destructor to sock_wfree.
IOW, we have no choice but to fix up sk_wmem accouting to reflect the
fully reassembled skb, else wmem will underflow.
This change moves the orphan down into the core, to last possible moment.
As ip_defrag_offset is aliased with sk_buff-&gt;sk member, we must move the
offset into the FRAG_CB, else skb-&gt;sk gets clobbered.
This allows to delay the orphaning long enough to learn if the skb has
to be queued or if the skb is completing the reasm queue.
In the former case, things work as before, skb is orphaned. This is
safe because skb gets queued/stolen and won&apos;t continue past reasm engine.
In the latter case, we will steal the skb-&gt;sk reference, reattach it to
the head skb, and fix up wmem accouting when inet_frag inflates truesize.(CVE-2024-26921)
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: validate the parameters of bo mapping operations more clearly
Verify the parameters of
amdgpu_vm_bo_(map/replace_map/clearing_mappings) in one common place.(CVE-2024-26922)</Note>
<Note Title="Topic" Type="General" Ordinal="4" xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP3.
openEuler Security has rated this update as having a security impact of high. A Common Vunlnerability Scoring System(CVSS)base score,which gives a detailed severity rating, is available for each vulnerability from the CVElink(s) in the References section.</Note>
<Note Title="Severity" Type="General" Ordinal="5" xml:lang="en">High</Note>
<Note Title="Affected Component" Type="General" Ordinal="6" xml:lang="en">kernel</Note>
</DocumentNotes>
<DocumentReferences>
<Reference Type="Self">
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Reference>
<Reference Type="openEuler CVE">
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2022-48655</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2022-48674</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52477</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52620</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52628</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52631</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52633</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52637</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52639</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52642</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52644</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-6270</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26642</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26645</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26665</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26668</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26669</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26671</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26679</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26680</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26684</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26685</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26688</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26689</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26697</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26706</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26707</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26720</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26726</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26733</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26734</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26735</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26739</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26740</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26743</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26744</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26754</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26763</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26776</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26782</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26787</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26791</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26792</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26801</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26804</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26805</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26808</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26809</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26811</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26812</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26814</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26817</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26828</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26829</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26839</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26840</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26843</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26846</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26852</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26855</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26859</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26862</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26863</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26865</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26869</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26870</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26872</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26875</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26878</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26880</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26893</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26895</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26896</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26897</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26917</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26921</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26922</URL>
</Reference>
<Reference Type="Other">
<URL>https://nvd.nist.gov/vuln/detail/CVE-2022-48655</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2022-48674</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52477</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52620</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52628</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52631</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52633</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52637</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52639</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52642</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52644</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-6270</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26642</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26645</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26665</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26668</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26669</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26671</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26679</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26680</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26684</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26685</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26688</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26689</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26697</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26706</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26707</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26720</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26726</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26733</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26734</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26735</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26739</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26740</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26743</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26744</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26754</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26763</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26776</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26782</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26787</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26791</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26792</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26801</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26804</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26805</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26808</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26809</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26811</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26812</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26814</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26817</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26828</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26829</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26839</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26840</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26843</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26846</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26852</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26855</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26859</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26862</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26863</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26865</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26869</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26870</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26872</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26875</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26878</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26880</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26893</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26895</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26896</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26897</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26917</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26921</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26922</URL>
</Reference>
</DocumentReferences>
<ProductTree xmlns="http://www.icasi.org/CVRF/schema/prod/1.1">
<Branch Type="Product Name" Name="openEuler">
<FullProductName ProductID="openEuler-22.03-LTS-SP3" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">openEuler-22.03-LTS-SP3</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="aarch64">
<FullProductName ProductID="kernel-devel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-devel-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-devel-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-debuginfo-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-debuginfo-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-headers-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debugsource-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-source-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debuginfo-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-debuginfo-5.10.0-199.0.0.112.oe2203sp3.aarch64.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="src">
<FullProductName ProductID="kernel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-5.10.0-199.0.0.112.oe2203sp3.src.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="x86_64">
<FullProductName ProductID="kernel-tools-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-debuginfo-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-debuginfo-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debugsource-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-devel-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-source-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-devel-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debuginfo-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-headers-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-debuginfo-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-debuginfo-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-5.10.0-199.0.0.112" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-5.10.0-199.0.0.112.oe2203sp3.x86_64.rpm</FullProductName>
</Branch>
</ProductTree>
<Vulnerability Ordinal="1" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:firmware: arm_scmi: Harden accesses to the reset domainsAccessing reset domains descriptors by the index upon the SCMI driversrequests through the SCMI reset operations interface can potentiallylead to out-of-bound violations if the SCMI driver misbehave.Add an internal consistency check before any such domains descriptorsaccesses.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2022-48655</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.8</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="2" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="2" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
erofs: fix pcluster use-after-free on UP platforms
During stress testing with CONFIG_SMP disabled, KASAN reports as below:
==================================================================
BUG: KASAN: use-after-free in __mutex_lock+0xe5/0xc30
Read of size 8 at addr ffff8881094223f8 by task stress/7789
CPU: 0 PID: 7789 Comm: stress Not tainted 6.0.0-rc1-00002-g0d53d2e882f9 #3
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
Call Trace:
&lt;TASK&gt;
..
__mutex_lock+0xe5/0xc30
..
z_erofs_do_read_page+0x8ce/0x1560
..
z_erofs_readahead+0x31c/0x580
..
Freed by task 7787
kasan_save_stack+0x1e/0x40
kasan_set_track+0x20/0x30
kasan_set_free_info+0x20/0x40
__kasan_slab_free+0x10c/0x190
kmem_cache_free+0xed/0x380
rcu_core+0x3d5/0xc90
__do_softirq+0x12d/0x389
Last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0x97/0xb0
call_rcu+0x3d/0x3f0
erofs_shrink_workstation+0x11f/0x210
erofs_shrink_scan+0xdc/0x170
shrink_slab.constprop.0+0x296/0x530
drop_slab+0x1c/0x70
drop_caches_sysctl_handler+0x70/0x80
proc_sys_call_handler+0x20a/0x2f0
vfs_write+0x555/0x6c0
ksys_write+0xbe/0x160
do_syscall_64+0x3b/0x90
The root cause is that erofs_workgroup_unfreeze() doesn&apos;t reset to
orig_val thus it causes a race that the pcluster reuses unexpectedly
before freeing.
Since UP platforms are quite rare now, such path becomes unnecessary.
Let&apos;s drop such specific-designed path directly instead.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2022-48674</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="3" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="3" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
usb: hub: Guard against accesses to uninitialized BOS descriptors
Many functions in drivers/usb/core/hub.c and drivers/usb/core/hub.h
access fields inside udev-&gt;bos without checking if it was allocated and
initialized. If usb_get_bos_descriptor() fails for whatever
reason, udev-&gt;bos will be NULL and those accesses will result in a
crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 17818 Comm: kworker/5:1 Tainted: G W 5.15.108-18910-gab0e1cb584e1 #1 &lt;HASH:1f9e 1&gt;
Hardware name: Google Kindred/Kindred, BIOS Google_Kindred.12672.413.0 02/03/2021
Workqueue: usb_hub_wq hub_event
RIP: 0010:hub_port_reset+0x193/0x788
Code: 89 f7 e8 20 f7 15 00 48 8b 43 08 80 b8 96 03 00 00 03 75 36 0f b7 88 92 03 00 00 81 f9 10 03 00 00 72 27 48 8b 80 a8 03 00 00 &lt;48&gt; 83 78 18 00 74 19 48 89 df 48 8b 75 b0 ba 02 00 00 00 4c 89 e9
RSP: 0018:ffffab740c53fcf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa1bc5f678000 RCX: 0000000000000310
RDX: fffffffffffffdff RSI: 0000000000000286 RDI: ffffa1be9655b840
RBP: ffffab740c53fd70 R08: 00001b7d5edaa20c R09: ffffffffb005e060
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: ffffab740c53fd3e R14: 0000000000000032 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffffa1be96540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000022e80c005 CR4: 00000000003706e0
Call Trace:
hub_event+0x73f/0x156e
? hub_activate+0x5b7/0x68f
process_one_work+0x1a2/0x487
worker_thread+0x11a/0x288
kthread+0x13a/0x152
? process_one_work+0x487/0x487
? kthread_associate_blkcg+0x70/0x70
ret_from_fork+0x1f/0x30
Fall back to a default behavior if the BOS descriptor isn&apos;t accessible
and skip all the functionalities that depend on it: LPM support checks,
Super Speed capabilitiy checks, U1/U2 states setup.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52477</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="4" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="4" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow timeout for anonymous sets
Never used from userspace, disallow these parameters.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52620</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="5" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="5" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: exthdr: fix 4-byte stack OOB write
If priv-&gt;len is a multiple of 4, then dst[len / 4] can write past
the destination array which leads to stack corruption.
This construct is necessary to clean the remainder of the register
in case -&gt;len is NOT a multiple of the register size, so make it
conditional just like nft_payload.c does.
The bug was added in 4.1 cycle and then copied/inherited when
tcp/sctp and ip option support was added.
Bug reported by Zero Day Initiative project (ZDI-CAN-21950,
ZDI-CAN-21951, ZDI-CAN-21961).</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52628</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.8</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="6" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="6" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix an NULL dereference bug
The issue here is when this is called from ntfs_load_attr_list(). The
&quot;size&quot; comes from le32_to_cpu(attr-&gt;res.data_size) so it can&apos;t overflow
on a 64bit systems but on 32bit systems the &quot;+ 1023&quot; can overflow and
the result is zero. This means that the kmalloc will succeed by
returning the ZERO_SIZE_PTR and then the memcpy() will crash with an
Oops on the next line.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52631</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="7" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="7" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
um: time-travel: fix time corruption
In &apos;basic&apos; time-travel mode (without =inf-cpu or =ext), we
still get timer interrupts. These can happen at arbitrary
points in time, i.e. while in timer_read(), which pushes
time forward just a little bit. Then, if we happen to get
the interrupt after calculating the new time to push to,
but before actually finishing that, the interrupt will set
the time to a value that&apos;s incompatible with the forward,
and we&apos;ll crash because time goes backwards when we do the
forwarding.
Fix this by reading the time_travel_time, calculating the
adjustment, and doing the adjustment all with interrupts
disabled.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52633</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="8" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="8" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
can: j1939: Fix UAF in j1939_sk_match_filter during setsockopt(SO_J1939_FILTER)
Lock jsk-&gt;sk to prevent UAF when setsockopt(..., SO_J1939_FILTER, ...)
modifies jsk-&gt;filters while receiving packets.
Following trace was seen on affected system:
==================================================================
BUG: KASAN: slab-use-after-free in j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
Read of size 4 at addr ffff888012144014 by task j1939/350
CPU: 0 PID: 350 Comm: j1939 Tainted: G W OE 6.5.0-rc5 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
print_report+0xd3/0x620
? kasan_complete_mode_report_info+0x7d/0x200
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
kasan_report+0xc2/0x100
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
__asan_load4+0x84/0xb0
j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
j1939_sk_recv+0x20b/0x320 [can_j1939]
? __kasan_check_write+0x18/0x20
? __pfx_j1939_sk_recv+0x10/0x10 [can_j1939]
? j1939_simple_recv+0x69/0x280 [can_j1939]
? j1939_ac_recv+0x5e/0x310 [can_j1939]
j1939_can_recv+0x43f/0x580 [can_j1939]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
? raw_rcv+0x42/0x3c0 [can_raw]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
can_rcv_filter+0x11f/0x350 [can]
can_receive+0x12f/0x190 [can]
? __pfx_can_rcv+0x10/0x10 [can]
can_rcv+0xdd/0x130 [can]
? __pfx_can_rcv+0x10/0x10 [can]
__netif_receive_skb_one_core+0x13d/0x150
? __pfx___netif_receive_skb_one_core+0x10/0x10
? __kasan_check_write+0x18/0x20
? _raw_spin_lock_irq+0x8c/0xe0
__netif_receive_skb+0x23/0xb0
process_backlog+0x107/0x260
__napi_poll+0x69/0x310
net_rx_action+0x2a1/0x580
? __pfx_net_rx_action+0x10/0x10
? __pfx__raw_spin_lock+0x10/0x10
? handle_irq_event+0x7d/0xa0
__do_softirq+0xf3/0x3f8
do_softirq+0x53/0x80
&lt;/IRQ&gt;
&lt;TASK&gt;
__local_bh_enable_ip+0x6e/0x70
netif_rx+0x16b/0x180
can_send+0x32b/0x520 [can]
? __pfx_can_send+0x10/0x10 [can]
? __check_object_size+0x299/0x410
raw_sendmsg+0x572/0x6d0 [can_raw]
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
? apparmor_socket_sendmsg+0x2f/0x40
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
sock_sendmsg+0xef/0x100
sock_write_iter+0x162/0x220
? __pfx_sock_write_iter+0x10/0x10
? __rtnl_unlock+0x47/0x80
? security_file_permission+0x54/0x320
vfs_write+0x6ba/0x750
? __pfx_vfs_write+0x10/0x10
? __fget_light+0x1ca/0x1f0
? __rcu_read_unlock+0x5b/0x280
ksys_write+0x143/0x170
? __pfx_ksys_write+0x10/0x10
? __kasan_check_read+0x15/0x20
? fpregs_assert_state_consistent+0x62/0x70
__x64_sys_write+0x47/0x60
do_syscall_64+0x60/0x90
? do_syscall_64+0x6d/0x90
? irqentry_exit+0x3f/0x50
? exc_page_fault+0x79/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Allocated by task 348:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x1f/0x30
__kasan_kmalloc+0xb5/0xc0
__kmalloc_node_track_caller+0x67/0x160
j1939_sk_setsockopt+0x284/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 349:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_free_info+0x2f/0x50
__kasan_slab_free+0x12e/0x1c0
__kmem_cache_free+0x1b9/0x380
kfree+0x7a/0x120
j1939_sk_setsockopt+0x3b2/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52637</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="9" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="9" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: vsie: fix race during shadow creation
Right now it is possible to see gmap-&gt;private being zero in
kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the
fact that we add gmap-&gt;private == kvm after creation:
static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
[...]
gmap = gmap_shadow(vcpu-&gt;arch.gmap, asce, edat);
if (IS_ERR(gmap))
return PTR_ERR(gmap);
gmap-&gt;private = vcpu-&gt;kvm;
Let children inherit the private field of the parent.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52639</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="10" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="10" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: rc: bpf attach/detach requires write permission
Note that bpf attach/detach also requires CAP_NET_ADMIN.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52642</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="11" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="11" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: b43: Stop/wake correct queue in DMA Tx path when QoS is disabled
When QoS is disabled, the queue priority value will not map to the correct
ieee80211 queue since there is only one queue. Stop/wake queue 0 when QoS
is disabled to prevent trying to stop/wake a non-existent queue and failing
to stop/wake the actual queue instantiated.
Log of issue before change (with kernel parameter qos=0):
[ +5.112651] ------------[ cut here ]------------
[ +0.000005] WARNING: CPU: 7 PID: 25513 at net/mac80211/util.c:449 __ieee80211_wake_queue+0xd5/0x180 [mac80211]
[ +0.000067] Modules linked in: b43(O) snd_seq_dummy snd_hrtimer snd_seq snd_seq_device nft_chain_nat xt_MASQUERADE nf_nat xfrm_user xfrm_algo xt_addrtype overlay ccm af_packet amdgpu snd_hda_codec_cirrus snd_hda_codec_generic ledtrig_audio drm_exec amdxcp gpu_sched xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip6t_rpfilter ipt_rpfilter xt_pkttype xt_LOG nf_log_syslog xt_tcpudp nft_compat nf_tables nfnetlink sch_fq_codel btusb uinput iTCO_wdt ctr btrtl intel_pmc_bxt i915 intel_rapl_msr mei_hdcp mei_pxp joydev at24 watchdog btintel atkbd libps2 serio radeon btbcm vivaldi_fmap btmtk intel_rapl_common snd_hda_codec_hdmi bluetooth uvcvideo nls_iso8859_1 applesmc nls_cp437 x86_pkg_temp_thermal snd_hda_intel intel_powerclamp vfat videobuf2_vmalloc coretemp fat snd_intel_dspcfg crc32_pclmul uvc polyval_clmulni snd_intel_sdw_acpi loop videobuf2_memops snd_hda_codec tun drm_suballoc_helper polyval_generic drm_ttm_helper drm_buddy tap ecdh_generic videobuf2_v4l2 gf128mul macvlan ttm ghash_clmulni_intel ecc tg3
[ +0.000044] videodev bridge snd_hda_core rapl crc16 drm_display_helper cec mousedev snd_hwdep evdev intel_cstate bcm5974 hid_appleir videobuf2_common stp mac_hid libphy snd_pcm drm_kms_helper acpi_als mei_me intel_uncore llc mc snd_timer intel_gtt industrialio_triggered_buffer apple_mfi_fastcharge i2c_i801 mei snd lpc_ich agpgart ptp i2c_smbus thunderbolt apple_gmux i2c_algo_bit kfifo_buf video industrialio soundcore pps_core wmi tiny_power_button sbs sbshc button ac cordic bcma mac80211 cfg80211 ssb rfkill libarc4 kvm_intel kvm drm irqbypass fuse backlight firmware_class efi_pstore configfs efivarfs dmi_sysfs ip_tables x_tables autofs4 dm_crypt cbc encrypted_keys trusted asn1_encoder tee tpm rng_core input_leds hid_apple led_class hid_generic usbhid hid sd_mod t10_pi crc64_rocksoft crc64 crc_t10dif crct10dif_generic ahci libahci libata uhci_hcd ehci_pci ehci_hcd crct10dif_pclmul crct10dif_common sha512_ssse3 sha512_generic sha256_ssse3 sha1_ssse3 aesni_intel usbcore scsi_mod libaes crypto_simd cryptd scsi_common
[ +0.000055] usb_common rtc_cmos btrfs blake2b_generic libcrc32c crc32c_generic crc32c_intel xor raid6_pq dm_snapshot dm_bufio dm_mod dax [last unloaded: b43(O)]
[ +0.000009] CPU: 7 PID: 25513 Comm: irq/17-b43 Tainted: G W O 6.6.7 #1-NixOS
[ +0.000003] Hardware name: Apple Inc. MacBookPro8,3/Mac-942459F5819B171B, BIOS 87.0.0.0.0 06/13/2019
[ +0.000001] RIP: 0010:__ieee80211_wake_queue+0xd5/0x180 [mac80211]
[ +0.000046] Code: 00 45 85 e4 0f 85 9b 00 00 00 48 8d bd 40 09 00 00 f0 48 0f ba ad 48 09 00 00 00 72 0f 5b 5d 41 5c 41 5d 41 5e e9 cb 6d 3c d0 &lt;0f&gt; 0b 5b 5d 41 5c 41 5d 41 5e c3 cc cc cc cc 48 8d b4 16 94 00 00
[ +0.000002] RSP: 0018:ffffc90003c77d60 EFLAGS: 00010097
[ +0.000001] RAX: 0000000000000001 RBX: 0000000000000002 RCX: 0000000000000000
[ +0.000001] RDX: 0000000000000000 RSI: 0000000000000002 RDI: ffff88820b924900
[ +0.000002] RBP: ffff88820b924900 R08: ffffc90003c77d90 R09: 000000000003bfd0
[ +0.000001] R10: ffff88820b924900 R11: ffffc90003c77c68 R12: 0000000000000000
[ +0.000001] R13: 0000000000000000 R14: ffffc90003c77d90 R15: ffffffffc0fa6f40
[ +0.000001] FS: 0000000000000000(0000) GS:ffff88846fb80000(0000) knlGS:0000000000000000
[ +0.000001] CS: 0010 DS: 0
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-52644</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="12" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="12" xml:lang="en">A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2023-6270</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.0</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="13" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="13" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow anonymous set with timeout flag
Anonymous sets are never used with timeout from userspace, reject this.
Exception to this rule is NFT_SET_EVAL to ensure legacy meters still work.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26642</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="14" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="14" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tracing: Ensure visibility when inserting an element into tracing_map
Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:
$ while true; do
echo hist:key=id.syscall:val=hitcount &gt; \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
sleep 0.001
done
$ stress-ng --sysbadaddr $(nproc)
The warning looks as follows:
[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626] tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220] hist_show+0x124/0x800
[ 2911.195692] seq_read_iter+0x1d4/0x4e8
[ 2911.196193] seq_read+0xe8/0x138
[ 2911.196638] vfs_read+0xc8/0x300
[ 2911.197078] ksys_read+0x70/0x108
[ 2911.197534] __arm64_sys_read+0x24/0x38
[ 2911.198046] invoke_syscall+0x78/0x108
[ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157] do_el0_svc+0x28/0x40
[ 2911.199613] el0_svc+0x40/0x178
[ 2911.200048] el0t_64_sync_handler+0x13c/0x158
[ 2911.200621] el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---
The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().
The check for the presence of an element with a given key in this
function is:
val = READ_ONCE(entry-&gt;val);
if (val &amp;&amp; keys_match(key, val-&gt;key, map-&gt;key_size)) ...
The write of a new entry is:
elt = get_free_elt(map);
memcpy(elt-&gt;key, key, map-&gt;key_size);
entry-&gt;val = elt;
The &quot;memcpy(elt-&gt;key, key, map-&gt;key_size);&quot; and &quot;entry-&gt;val = elt;&quot;
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn&apos;t match
an already present val-&gt;key and subse
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26645</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="15" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="15" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tunnels: fix out of bounds access when building IPv6 PMTU error
If the ICMPv6 error is built from a non-linear skb we get the following
splat,
BUG: KASAN: slab-out-of-bounds in do_csum+0x220/0x240
Read of size 4 at addr ffff88811d402c80 by task netperf/820
CPU: 0 PID: 820 Comm: netperf Not tainted 6.8.0-rc1+ #543
...
kasan_report+0xd8/0x110
do_csum+0x220/0x240
csum_partial+0xc/0x20
skb_tunnel_check_pmtu+0xeb9/0x3280
vxlan_xmit_one+0x14c2/0x4080
vxlan_xmit+0xf61/0x5c00
dev_hard_start_xmit+0xfb/0x510
__dev_queue_xmit+0x7cd/0x32a0
br_dev_queue_push_xmit+0x39d/0x6a0
Use skb_checksum instead of csum_partial who cannot deal with non-linear
SKBs.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26665</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="16" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="16" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_limit: reject configurations that cause integer overflow
Reject bogus configs where internal token counter wraps around.
This only occurs with very very large requests, such as 17gbyte/s.
Its better to reject this rather than having incorrect ratelimit.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26668</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="17" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="17" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/sched: flower: Fix chain template offload
When a qdisc is deleted from a net device the stack instructs the
underlying driver to remove its flow offload callback from the
associated filter block using the &apos;FLOW_BLOCK_UNBIND&apos; command. The stack
then continues to replay the removal of the filters in the block for
this driver by iterating over the chains in the block and invoking the
&apos;reoffload&apos; operation of the classifier being used. In turn, the
classifier in its &apos;reoffload&apos; operation prepares and emits a
&apos;FLOW_CLS_DESTROY&apos; command for each filter.
However, the stack does not do the same for chain templates and the
underlying driver never receives a &apos;FLOW_CLS_TMPLT_DESTROY&apos; command when
a qdisc is deleted. This results in a memory leak [1] which can be
reproduced using [2].
Fix by introducing a &apos;tmplt_reoffload&apos; operation and have the stack
invoke it with the appropriate arguments as part of the replay.
Implement the operation in the sole classifier that supports chain
templates (flower) by emitting the &apos;FLOW_CLS_TMPLT_{CREATE,DESTROY}&apos;
command based on whether a flow offload callback is being bound to a
filter block or being unbound from one.
As far as I can tell, the issue happens since cited commit which
reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains()
in __tcf_block_put(). The order cannot be reversed as the filter block
is expected to be freed after flushing all the chains.
[1]
unreferenced object 0xffff888107e28800 (size 2048):
comm &quot;tc&quot;, pid 1079, jiffies 4294958525 (age 3074.287s)
hex dump (first 32 bytes):
b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[......
01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................
backtrace:
[&lt;ffffffff81c06a68&gt;] __kmem_cache_alloc_node+0x1e8/0x320
[&lt;ffffffff81ab374e&gt;] __kmalloc+0x4e/0x90
[&lt;ffffffff832aec6d&gt;] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0
[&lt;ffffffff832bc195&gt;] mlxsw_sp_flower_tmplt_create+0x145/0x180
[&lt;ffffffff832b2e1a&gt;] mlxsw_sp_flow_block_cb+0x1ea/0x280
[&lt;ffffffff83a10613&gt;] tc_setup_cb_call+0x183/0x340
[&lt;ffffffff83a9f85a&gt;] fl_tmplt_create+0x3da/0x4c0
[&lt;ffffffff83a22435&gt;] tc_ctl_chain+0xa15/0x1170
[&lt;ffffffff838a863c&gt;] rtnetlink_rcv_msg+0x3cc/0xed0
[&lt;ffffffff83ac87f0&gt;] netlink_rcv_skb+0x170/0x440
[&lt;ffffffff83ac6270&gt;] netlink_unicast+0x540/0x820
[&lt;ffffffff83ac6e28&gt;] netlink_sendmsg+0x8d8/0xda0
[&lt;ffffffff83793def&gt;] ____sys_sendmsg+0x30f/0xa80
[&lt;ffffffff8379d29a&gt;] ___sys_sendmsg+0x13a/0x1e0
[&lt;ffffffff8379d50c&gt;] __sys_sendmsg+0x11c/0x1f0
[&lt;ffffffff843b9ce0&gt;] do_syscall_64+0x40/0xe0
unreferenced object 0xffff88816d2c0400 (size 1024):
comm &quot;tc&quot;, pid 1079, jiffies 4294958525 (age 3074.287s)
hex dump (first 32 bytes):
40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8.....
10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m....
backtrace:
[&lt;ffffffff81c06a68&gt;] __kmem_cache_alloc_node+0x1e8/0x320
[&lt;ffffffff81ab36c1&gt;] __kmalloc_node+0x51/0x90
[&lt;ffffffff81a8ed96&gt;] kvmalloc_node+0xa6/0x1f0
[&lt;ffffffff82827d03&gt;] bucket_table_alloc.isra.0+0x83/0x460
[&lt;ffffffff82828d2b&gt;] rhashtable_init+0x43b/0x7c0
[&lt;ffffffff832aed48&gt;] mlxsw_sp_acl_ruleset_get+0x428/0x7a0
[&lt;ffffffff832bc195&gt;] mlxsw_sp_flower_tmplt_create+0x145/0x180
[&lt;ffffffff832b2e1a&gt;] mlxsw_sp_flow_block_cb+0x1ea/0x280
[&lt;ffffffff83a10613&gt;] tc_setup_cb_call+0x183/0x340
[&lt;ffffffff83a9f85a&gt;] fl_tmplt_create+0x3da/0x4c0
[&lt;ffffffff83a22435&gt;] tc_ctl_chain+0xa15/0x1170
[&lt;ffffffff838a863c&gt;] rtnetlink_rcv_msg+0x3cc/0xed0
[&lt;ffffffff83ac87f0&gt;] netlink_rcv_skb+0x170/0x440
[&lt;ffffffff83ac6270&gt;] netlink_unicast+0x540/0x820
[&lt;ffffffff83ac6e28&gt;] netlink_sendmsg+0x8d8/0xda0
[&lt;ffffffff83793def&gt;] ____sys_sendmsg+0x30f/0xa80
[2]
# tc qdisc add dev swp1 clsact
# tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32
# tc qdisc del dev
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26669</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="18" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="18" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix IO hang from sbitmap wakeup race
In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered
with the following blk_mq_get_driver_tag() in case of getting driver
tag failure.
Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe
the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime
blk_mq_mark_tag_wait() can&apos;t get driver tag successfully.
This issue can be reproduced by running the following test in loop, and
fio hang can be observed in &lt; 30min when running it on my test VM
in laptop.
modprobe -r scsi_debug
modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4
dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename`
fio --filename=/dev/&quot;$dev&quot; --direct=1 --rw=randrw --bs=4k --iodepth=1 \
--runtime=100 --numjobs=40 --time_based --name=test \
--ioengine=libaio
Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which
is just fine in case of running out of tag.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26671</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="19" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="19" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
inet: read sk-&gt;sk_family once in inet_recv_error()
inet_recv_error() is called without holding the socket lock.
IPv6 socket could mutate to IPv4 with IPV6_ADDRFORM
socket option and trigger a KCSAN warning.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26679</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="20" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="20" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: Fix DMA mapping for PTP hwts ring
Function aq_ring_hwts_rx_alloc() maps extra AQ_CFG_RXDS_DEF bytes
for PTP HWTS ring but then generic aq_ring_free() does not take this
into account.
Create and use a specific function to free HWTS ring to fix this
issue.
Trace:
[ 215.351607] ------------[ cut here ]------------
[ 215.351612] DMA-API: atlantic 0000:4b:00.0: device driver frees DMA memory with different size [device address=0x00000000fbdd0000] [map size=34816 bytes] [unmap size=32768 bytes]
[ 215.351635] WARNING: CPU: 33 PID: 10759 at kernel/dma/debug.c:988 check_unmap+0xa6f/0x2360
...
[ 215.581176] Call Trace:
[ 215.583632] &lt;TASK&gt;
[ 215.585745] ? show_trace_log_lvl+0x1c4/0x2df
[ 215.590114] ? show_trace_log_lvl+0x1c4/0x2df
[ 215.594497] ? debug_dma_free_coherent+0x196/0x210
[ 215.599305] ? check_unmap+0xa6f/0x2360
[ 215.603147] ? __warn+0xca/0x1d0
[ 215.606391] ? check_unmap+0xa6f/0x2360
[ 215.610237] ? report_bug+0x1ef/0x370
[ 215.613921] ? handle_bug+0x3c/0x70
[ 215.617423] ? exc_invalid_op+0x14/0x50
[ 215.621269] ? asm_exc_invalid_op+0x16/0x20
[ 215.625480] ? check_unmap+0xa6f/0x2360
[ 215.629331] ? mark_lock.part.0+0xca/0xa40
[ 215.633445] debug_dma_free_coherent+0x196/0x210
[ 215.638079] ? __pfx_debug_dma_free_coherent+0x10/0x10
[ 215.643242] ? slab_free_freelist_hook+0x11d/0x1d0
[ 215.648060] dma_free_attrs+0x6d/0x130
[ 215.651834] aq_ring_free+0x193/0x290 [atlantic]
[ 215.656487] aq_ptp_ring_free+0x67/0x110 [atlantic]
...
[ 216.127540] ---[ end trace 6467e5964dd2640b ]---
[ 216.132160] DMA-API: Mapped at:
[ 216.132162] debug_dma_alloc_coherent+0x66/0x2f0
[ 216.132165] dma_alloc_attrs+0xf5/0x1b0
[ 216.132168] aq_ring_hwts_rx_alloc+0x150/0x1f0 [atlantic]
[ 216.132193] aq_ptp_ring_alloc+0x1bb/0x540 [atlantic]
[ 216.132213] aq_nic_init+0x4a1/0x760 [atlantic]</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26680</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="21" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="21" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: xgmac: fix handling of DPP safety error for DMA channels
Commit 56e58d6c8a56 (&quot;net: stmmac: Implement Safety Features in
XGMAC core&quot;) checks and reports safety errors, but leaves the
Data Path Parity Errors for each channel in DMA unhandled at all, lead to
a storm of interrupt.
Fix it by checking and clearing the DMA_DPP_Interrupt_Status register.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26684</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="22" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="22" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential bug in end_buffer_async_write
According to a syzbot report, end_buffer_async_write(), which handles the
completion of block device writes, may detect abnormal condition of the
buffer async_write flag and cause a BUG_ON failure when using nilfs2.
Nilfs2 itself does not use end_buffer_async_write(). But, the async_write
flag is now used as a marker by commit 7f42ec394156 (&quot;nilfs2: fix issue
with race condition of competition between segments for dirty blocks&quot;) as
a means of resolving double list insertion of dirty blocks in
nilfs_lookup_dirty_data_buffers() and nilfs_lookup_node_buffers() and the
resulting crash.
This modification is safe as long as it is used for file data and b-tree
node blocks where the page caches are independent. However, it was
irrelevant and redundant to also introduce async_write for segment summary
and super root blocks that share buffers with the backing device. This
led to the possibility that the BUG_ON check in end_buffer_async_write
would fail as described above, if independent writebacks of the backing
device occurred in parallel.
The use of async_write for segment summary buffers has already been
removed in a previous change.
Fix this issue by removing the manipulation of the async_write flag for
the remaining super root block buffer.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26685</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="23" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="23" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs,hugetlb: fix NULL pointer dereference in hugetlbs_fill_super
When configuring a hugetlb filesystem via the fsconfig() syscall, there is
a possible NULL dereference in hugetlbfs_fill_super() caused by assigning
NULL to ctx-&gt;hstate in hugetlbfs_parse_param() when the requested pagesize
is non valid.
E.g: Taking the following steps:
fd = fsopen(&quot;hugetlbfs&quot;, FSOPEN_CLOEXEC);
fsconfig(fd, FSCONFIG_SET_STRING, &quot;pagesize&quot;, &quot;1024&quot;, 0);
fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
Given that the requested &quot;pagesize&quot; is invalid, ctxt-&gt;hstate will be replaced
with NULL, losing its previous value, and we will print an error:
...
...
case Opt_pagesize:
ps = memparse(param-&gt;string, &amp;rest);
ctx-&gt;hstate = h;
if (!ctx-&gt;hstate) {
pr_err(&quot;Unsupported page size %lu MB\n&quot;, ps / SZ_1M);
return -EINVAL;
}
return 0;
...
...
This is a problem because later on, we will dereference ctxt-&gt;hstate in
hugetlbfs_fill_super()
...
...
sb-&gt;s_blocksize = huge_page_size(ctx-&gt;hstate);
...
...
Causing below Oops.
Fix this by replacing cxt-&gt;hstate value only when then pagesize is known
to be valid.
kernel: hugetlbfs: Unsupported page size 0 MB
kernel: BUG: kernel NULL pointer dereference, address: 0000000000000028
kernel: #PF: supervisor read access in kernel mode
kernel: #PF: error_code(0x0000) - not-present page
kernel: PGD 800000010f66c067 P4D 800000010f66c067 PUD 1b22f8067 PMD 0
kernel: Oops: 0000 [#1] PREEMPT SMP PTI
kernel: CPU: 4 PID: 5659 Comm: syscall Tainted: G E 6.8.0-rc2-default+ #22 5a47c3fef76212addcc6eb71344aabc35190ae8f
kernel: Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0
kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 &lt;8b&gt; 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28
kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246
kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004
kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000
kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004
kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000
kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400
kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0
kernel: Call Trace:
kernel: &lt;TASK&gt;
kernel: ? __die_body+0x1a/0x60
kernel: ? page_fault_oops+0x16f/0x4a0
kernel: ? search_bpf_extables+0x65/0x70
kernel: ? fixup_exception+0x22/0x310
kernel: ? exc_page_fault+0x69/0x150
kernel: ? asm_exc_page_fault+0x22/0x30
kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10
kernel: ? hugetlbfs_fill_super+0xb4/0x1a0
kernel: ? hugetlbfs_fill_super+0x28/0x1a0
kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10
kernel: vfs_get_super+0x40/0xa0
kernel: ? __pfx_bpf_lsm_capable+0x10/0x10
kernel: vfs_get_tree+0x25/0xd0
kernel: vfs_cmd_create+0x64/0xe0
kernel: __x64_sys_fsconfig+0x395/0x410
kernel: do_syscall_64+0x80/0x160
kernel: ? syscall_exit_to_user_mode+0x82/0x240
kernel: ? do_syscall_64+0x8d/0x160
kernel: ? syscall_exit_to_user_mode+0x82/0x240
kernel: ? do_syscall_64+0x8d/0x160
kernel: ? exc_page_fault+0x69/0x150
kernel: entry_SYSCALL_64_after_hwframe+0x6e/0x76
kernel: RIP: 0033:0x7ffbc0cb87c9
kernel: Code: 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 8b 0d 97 96 0d 00 f7 d8 64 89 01 48
kernel: RSP: 002b:00007ffc29d2f388 EFLAGS: 00000206 ORIG_RAX: 00000000000001af
kernel: RAX: fffffffffff
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26688</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="24" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="24" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ceph: prevent use-after-free in encode_cap_msg()
In fs/ceph/caps.c, in encode_cap_msg(), &quot;use after free&quot; error was
caught by KASAN at this line - &apos;ceph_buffer_get(arg-&gt;xattr_buf);&apos;. This
implies before the refcount could be increment here, it was freed.
In same file, in &quot;handle_cap_grant()&quot; refcount is decremented by this
line - &apos;ceph_buffer_put(ci-&gt;i_xattrs.blob);&apos;. It appears that a race
occurred and resource was freed by the latter line before the former
line could increment it.
encode_cap_msg() is called by __send_cap() and __send_cap() is called by
ceph_check_caps() after calling __prep_cap(). __prep_cap() is where
arg-&gt;xattr_buf is assigned to ci-&gt;i_xattrs.blob. This is the spot where
the refcount must be increased to prevent &quot;use after free&quot; error.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26689</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="25" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="25" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix data corruption in dsync block recovery for small block sizes
The helper function nilfs_recovery_copy_block() of
nilfs_recovery_dsync_blocks(), which recovers data from logs created by
data sync writes during a mount after an unclean shutdown, incorrectly
calculates the on-page offset when copying repair data to the file&apos;s page
cache. In environments where the block size is smaller than the page
size, this flaw can cause data corruption and leak uninitialized memory
bytes during the recovery process.
Fix these issues by correcting this byte offset calculation on the page.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26697</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="26" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="26" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix random data corruption from exception handler
The current exception handler implementation, which assists when accessing
user space memory, may exhibit random data corruption if the compiler decides
to use a different register than the specified register %r29 (defined in
ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another
register, the fault handler will nevertheless store -EFAULT into %r29 and thus
trash whatever this register is used for.
Looking at the assembly I found that this happens sometimes in emulate_ldd().
To solve the issue, the easiest solution would be if it somehow is
possible to tell the fault handler which register is used to hold the error
code. Using %0 or %1 in the inline assembly is not posssible as it will show
up as e.g. %r29 (with the &quot;%r&quot; prefix), which the GNU assembler can not
convert to an integer.
This patch takes another, better and more flexible approach:
We extend the __ex_table (which is out of the execution path) by one 32-word.
In this word we tell the compiler to insert the assembler instruction
&quot;or %r0,%r0,%reg&quot;, where %reg references the register which the compiler
choosed for the error return code.
In case of an access failure, the fault handler finds the __ex_table entry and
can examine the opcode. The used register is encoded in the lowest 5 bits, and
the fault handler can then store -EFAULT into this register.
Since we extend the __ex_table to 3 words we can&apos;t use the BUILDTIME_TABLE_SORT
config option any longer.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26706</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="27" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="27" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame()
Syzkaller reported [1] hitting a warning after failing to allocate
resources for skb in hsr_init_skb(). Since a WARN_ONCE() call will
not help much in this case, it might be prudent to switch to
netdev_warn_once(). At the very least it will suppress syzkaller
reports such as [1].
Just in case, use netdev_warn_once() in send_prp_supervision_frame()
for similar reasons.
[1]
HSR: Could not send supervision frame
WARNING: CPU: 1 PID: 85 at net/hsr/hsr_device.c:294 send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
RIP: 0010:send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
...
Call Trace:
&lt;IRQ&gt;
hsr_announce+0x114/0x370 net/hsr/hsr_device.c:382
call_timer_fn+0x193/0x590 kernel/time/timer.c:1700
expire_timers kernel/time/timer.c:1751 [inline]
__run_timers+0x764/0xb20 kernel/time/timer.c:2022
run_timer_softirq+0x58/0xd0 kernel/time/timer.c:2035
__do_softirq+0x21a/0x8de kernel/softirq.c:553
invoke_softirq kernel/softirq.c:427 [inline]
__irq_exit_rcu kernel/softirq.c:632 [inline]
irq_exit_rcu+0xb7/0x120 kernel/softirq.c:644
sysvec_apic_timer_interrupt+0x95/0xb0 arch/x86/kernel/apic/apic.c:1076
&lt;/IRQ&gt;
&lt;TASK&gt;
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:649
...
This issue is also found in older kernels (at least up to 5.10).</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26707</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="28" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="28" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again
(struct dirty_throttle_control *)-&gt;thresh is an unsigned long, but is
passed as the u32 divisor argument to div_u64(). On architectures where
unsigned long is 64 bytes, the argument will be implicitly truncated.
Use div64_u64() instead of div_u64() so that the value used in the &quot;is
this a safe division&quot; check is the same as the divisor.
Also, remove redundant cast of the numerator to u64, as that should happen
implicitly.
This would be difficult to exploit in memcg domain, given the ratio-based
arithmetic domain_drity_limits() uses, but is much easier in global
writeback domain with a BDI_CAP_STRICTLIMIT-backing device, using e.g.
vm.dirty_bytes=(1&lt;&lt;32)*PAGE_SIZE so that dtc-&gt;thresh == (1&lt;&lt;32)</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26720</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="29" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="29" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
btrfs: don&apos;t drop extent_map for free space inode on write error
While running the CI for an unrelated change I hit the following panic
with generic/648 on btrfs_holes_spacecache.
assertion failed: block_start != EXTENT_MAP_HOLE, in fs/btrfs/extent_io.c:1385
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:1385!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 2695096 Comm: fsstress Kdump: loaded Tainted: G W 6.8.0-rc2+ #1
RIP: 0010:__extent_writepage_io.constprop.0+0x4c1/0x5c0
Call Trace:
&lt;TASK&gt;
extent_write_cache_pages+0x2ac/0x8f0
extent_writepages+0x87/0x110
do_writepages+0xd5/0x1f0
filemap_fdatawrite_wbc+0x63/0x90
__filemap_fdatawrite_range+0x5c/0x80
btrfs_fdatawrite_range+0x1f/0x50
btrfs_write_out_cache+0x507/0x560
btrfs_write_dirty_block_groups+0x32a/0x420
commit_cowonly_roots+0x21b/0x290
btrfs_commit_transaction+0x813/0x1360
btrfs_sync_file+0x51a/0x640
__x64_sys_fdatasync+0x52/0x90
do_syscall_64+0x9c/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
This happens because we fail to write out the free space cache in one
instance, come back around and attempt to write it again. However on
the second pass through we go to call btrfs_get_extent() on the inode to
get the extent mapping. Because this is a new block group, and with the
free space inode we always search the commit root to avoid deadlocking
with the tree, we find nothing and return a EXTENT_MAP_HOLE for the
requested range.
This happens because the first time we try to write the space cache out
we hit an error, and on an error we drop the extent mapping. This is
normal for normal files, but the free space cache inode is special. We
always expect the extent map to be correct. Thus the second time
through we end up with a bogus extent map.
Since we&apos;re deprecating this feature, the most straightforward way to
fix this is to simply skip dropping the extent map range for this failed
range.
I shortened the test by using error injection to stress the area to make
it easier to reproduce. With this patch in place we no longer panic
with my error injection test.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26726</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="30" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="30" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
arp: Prevent overflow in arp_req_get().
syzkaller reported an overflown write in arp_req_get(). [0]
When ioctl(SIOCGARP) is issued, arp_req_get() looks up an neighbour
entry and copies neigh-&gt;ha to struct arpreq.arp_ha.sa_data.
The arp_ha here is struct sockaddr, not struct sockaddr_storage, so
the sa_data buffer is just 14 bytes.
In the splat below, 2 bytes are overflown to the next int field,
arp_flags. We initialise the field just after the memcpy(), so it&apos;s
not a problem.
However, when dev-&gt;addr_len is greater than 22 (e.g. MAX_ADDR_LEN),
arp_netmask is overwritten, which could be set as htonl(0xFFFFFFFFUL)
in arp_ioctl() before calling arp_req_get().
To avoid the overflow, let&apos;s limit the max length of memcpy().
Note that commit b5f0de6df6dc (&quot;net: dev: Convert sa_data to flexible
array in struct sockaddr&quot;) just silenced syzkaller.
[0]:
memcpy: detected field-spanning write (size 16) of single field &quot;r-&gt;arp_ha.sa_data&quot; at net/ipv4/arp.c:1128 (size 14)
WARNING: CPU: 0 PID: 144638 at net/ipv4/arp.c:1128 arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Modules linked in:
CPU: 0 PID: 144638 Comm: syz-executor.4 Not tainted 6.1.74 #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014
RIP: 0010:arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Code: fd ff ff e8 41 42 de fb b9 0e 00 00 00 4c 89 fe 48 c7 c2 20 6d ab 87 48 c7 c7 80 6d ab 87 c6 05 25 af 72 04 01 e8 5f 8d ad fb &lt;0f&gt; 0b e9 6c fd ff ff e8 13 42 de fb be 03 00 00 00 4c 89 e7 e8 a6
RSP: 0018:ffffc900050b7998 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff88803a815000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8641a44a RDI: 0000000000000001
RBP: ffffc900050b7a98 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 203a7970636d656d R12: ffff888039c54000
R13: 1ffff92000a16f37 R14: ffff88803a815084 R15: 0000000000000010
FS: 00007f172bf306c0(0000) GS:ffff88805aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f172b3569f0 CR3: 0000000057f12005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
arp_ioctl+0x33f/0x4b0 net/ipv4/arp.c:1261
inet_ioctl+0x314/0x3a0 net/ipv4/af_inet.c:981
sock_do_ioctl+0xdf/0x260 net/socket.c:1204
sock_ioctl+0x3ef/0x650 net/socket.c:1321
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x18e/0x220 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x37/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x64/0xce
RIP: 0033:0x7f172b262b8d
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f172bf300b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f172b3abf80 RCX: 00007f172b262b8d
RDX: 0000000020000000 RSI: 0000000000008954 RDI: 0000000000000003
RBP: 00007f172b2d3493 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f172b3abf80 R15: 00007f172bf10000
&lt;/TASK&gt;</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26733</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="31" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="31" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
devlink: fix possible use-after-free and memory leaks in devlink_init()
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.
Make an unregister in case of unsuccessful registration.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26734</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="32" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="32" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix possible use-after-free and null-ptr-deref
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26735</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="33" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="33" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: don&apos;t override retval if we already lost the skb
If we&apos;re redirecting the skb, and haven&apos;t called tcf_mirred_forward(),
yet, we need to tell the core to drop the skb by setting the retcode
to SHOT. If we have called tcf_mirred_forward(), however, the skb
is out of our hands and returning SHOT will lead to UaF.
Move the retval override to the error path which actually need it.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26739</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="34" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="34" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: use the backlog for mirred ingress
The test Davide added in commit ca22da2fbd69 (&quot;act_mirred: use the backlog
for nested calls to mirred ingress&quot;) hangs our testing VMs every 10 or so
runs, with the familiar tcp_v4_rcv -&gt; tcp_v4_rcv deadlock reported by
lockdep.
The problem as previously described by Davide (see Link) is that
if we reverse flow of traffic with the redirect (egress -&gt; ingress)
we may reach the same socket which generated the packet. And we may
still be holding its socket lock. The common solution to such deadlocks
is to put the packet in the Rx backlog, rather than run the Rx path
inline. Do that for all egress -&gt; ingress reversals, not just once
we started to nest mirred calls.
In the past there was a concern that the backlog indirection will
lead to loss of error reporting / less accurate stats. But the current
workaround does not seem to address the issue.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26740</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="35" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="35" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix qedr_create_user_qp error flow
Avoid the following warning by making sure to free the allocated
resources in case that qedr_init_user_queue() fail.
-----------[ cut here ]-----------
WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3
ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt]
CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022
RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 &lt;0f&gt; 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff
RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286
RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016
RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600
RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80
R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0
Call Trace:
&lt;TASK&gt;
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? __warn+0x81/0x110
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? report_bug+0x10a/0x140
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
__fput+0x94/0x250
task_work_run+0x5c/0x90
do_exit+0x270/0x4a0
do_group_exit+0x2d/0x90
get_signal+0x87c/0x8c0
arch_do_signal_or_restart+0x25/0x100
? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs]
exit_to_user_mode_loop+0x9c/0x130
exit_to_user_mode_prepare+0xb6/0x100
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
? common_interrupt+0x43/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x1470abe3ec6b
Code: Unable to access opcode bytes at RIP 0x1470abe3ec41.
RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b
RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004
RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00
R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358
R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470
&lt;/TASK&gt;
--[ end trace 888a9b92e04c5c97 ]--</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26743</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="36" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="36" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Support specifying the srpt_service_guid parameter
Make loading ib_srpt with this parameter set work. The current behavior is
that setting that parameter while loading the ib_srpt kernel module
triggers the following kernel crash:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Call Trace:
&lt;TASK&gt;
parse_one+0x18c/0x1d0
parse_args+0xe1/0x230
load_module+0x8de/0xa60
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x181/0x240
__x64_sys_finit_module+0x5a/0xb0
do_syscall_64+0x5f/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26744</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="37" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="37" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
gtp: fix use-after-free and null-ptr-deref in gtp_genl_dump_pdp()
The gtp_net_ops pernet operations structure for the subsystem must be
registered before registering the generic netlink family.
Syzkaller hit &apos;general protection fault in gtp_genl_dump_pdp&apos; bug:
general protection fault, probably for non-canonical address
0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 1 PID: 5826 Comm: gtp Not tainted 6.8.0-rc3-std-def-alt1 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014
RIP: 0010:gtp_genl_dump_pdp+0x1be/0x800 [gtp]
Code: c6 89 c6 e8 64 e9 86 df 58 45 85 f6 0f 85 4e 04 00 00 e8 c5 ee 86
df 48 8b 54 24 18 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 &lt;80&gt;
3c 02 00 0f 85 de 05 00 00 48 8b 44 24 18 4c 8b 30 4c 39 f0 74
RSP: 0018:ffff888014107220 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000002 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff88800fcda588 R14: 0000000000000001 R15: 0000000000000000
FS: 00007f1be4eb05c0(0000) GS:ffff88806ce80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1be4e766cf CR3: 000000000c33e000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
? show_regs+0x90/0xa0
? die_addr+0x50/0xd0
? exc_general_protection+0x148/0x220
? asm_exc_general_protection+0x22/0x30
? gtp_genl_dump_pdp+0x1be/0x800 [gtp]
? __alloc_skb+0x1dd/0x350
? __pfx___alloc_skb+0x10/0x10
genl_dumpit+0x11d/0x230
netlink_dump+0x5b9/0xce0
? lockdep_hardirqs_on_prepare+0x253/0x430
? __pfx_netlink_dump+0x10/0x10
? kasan_save_track+0x10/0x40
? __kasan_kmalloc+0x9b/0xa0
? genl_start+0x675/0x970
__netlink_dump_start+0x6fc/0x9f0
genl_family_rcv_msg_dumpit+0x1bb/0x2d0
? __pfx_genl_family_rcv_msg_dumpit+0x10/0x10
? genl_op_from_small+0x2a/0x440
? cap_capable+0x1d0/0x240
? __pfx_genl_start+0x10/0x10
? __pfx_genl_dumpit+0x10/0x10
? __pfx_genl_done+0x10/0x10
? security_capable+0x9d/0xe0</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26754</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="38" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="38" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
dm-crypt: don&apos;t modify the data when using authenticated encryption
It was said that authenticated encryption could produce invalid tag when
the data that is being encrypted is modified [1]. So, fix this problem by
copying the data into the clone bio first and then encrypt them inside the
clone bio.
This may reduce performance, but it is needed to prevent the user from
corrupting the device by writing data with O_DIRECT and modifying them at
the same time.
[1] https://lore.kernel.org/all/20240207004723.GA35324@sol.localdomain/T/</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26763</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="39" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="39" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
spi: hisi-sfc-v3xx: Return IRQ_NONE if no interrupts were detected
Return IRQ_NONE from the interrupt handler when no interrupt was
detected. Because an empty interrupt will cause a null pointer error:
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000008
Call trace:
complete+0x54/0x100
hisi_sfc_v3xx_isr+0x2c/0x40 [spi_hisi_sfc_v3xx]
__handle_irq_event_percpu+0x64/0x1e0
handle_irq_event+0x7c/0x1cc</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26776</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="40" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="40" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix double-free on socket dismantle
when MPTCP server accepts an incoming connection, it clones its listener
socket. However, the pointer to &apos;inet_opt&apos; for the new socket has the same
value as the original one: as a consequence, on program exit it&apos;s possible
to observe the following splat:
BUG: KASAN: double-free in inet_sock_destruct+0x54f/0x8b0
Free of addr ffff888485950880 by task swapper/25/0
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Not tainted 6.8.0-rc1+ #609
Hardware name: Supermicro SYS-6027R-72RF/X9DRH-7TF/7F/iTF/iF, BIOS 3.0 07/26/2013
Call Trace:
&lt;IRQ&gt;
dump_stack_lvl+0x32/0x50
print_report+0xca/0x620
kasan_report_invalid_free+0x64/0x90
__kasan_slab_free+0x1aa/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
rcu_do_batch+0x34e/0xd90
rcu_core+0x559/0xac0
__do_softirq+0x183/0x5a4
irq_exit_rcu+0x12d/0x170
sysvec_apic_timer_interrupt+0x6b/0x80
&lt;/IRQ&gt;
&lt;TASK&gt;
asm_sysvec_apic_timer_interrupt+0x16/0x20
RIP: 0010:cpuidle_enter_state+0x175/0x300
Code: 30 00 0f 84 1f 01 00 00 83 e8 01 83 f8 ff 75 e5 48 83 c4 18 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc fb 45 85 ed &lt;0f&gt; 89 60 ff ff ff 48 c1 e5 06 48 c7 43 18 00 00 00 00 48 83 44 2b
RSP: 0018:ffff888481cf7d90 EFLAGS: 00000202
RAX: 0000000000000000 RBX: ffff88887facddc8 RCX: 0000000000000000
RDX: 1ffff1110ff588b1 RSI: 0000000000000019 RDI: ffff88887fac4588
RBP: 0000000000000004 R08: 0000000000000002 R09: 0000000000043080
R10: 0009b02ea273363f R11: ffff88887fabf42b R12: ffffffff932592e0
R13: 0000000000000004 R14: 0000000000000000 R15: 00000022c880ec80
cpuidle_enter+0x4a/0xa0
do_idle+0x310/0x410
cpu_startup_entry+0x51/0x60
start_secondary+0x211/0x270
secondary_startup_64_no_verify+0x184/0x18b
&lt;/TASK&gt;
Allocated by task 6853:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
__kmalloc+0x1eb/0x450
cipso_v4_sock_setattr+0x96/0x360
netlbl_sock_setattr+0x132/0x1f0
selinux_netlbl_socket_post_create+0x6c/0x110
selinux_socket_post_create+0x37b/0x7f0
security_socket_post_create+0x63/0xb0
__sock_create+0x305/0x450
__sys_socket_create.part.23+0xbd/0x130
__sys_socket+0x37/0xb0
__x64_sys_socket+0x6f/0xb0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 6858:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x12c/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
subflow_ulp_release+0x1f0/0x250
tcp_cleanup_ulp+0x6e/0x110
tcp_v4_destroy_sock+0x5a/0x3a0
inet_csk_destroy_sock+0x135/0x390
tcp_fin+0x416/0x5c0
tcp_data_queue+0x1bc8/0x4310
tcp_rcv_state_process+0x15a3/0x47b0
tcp_v4_do_rcv+0x2c1/0x990
tcp_v4_rcv+0x41fb/0x5ed0
ip_protocol_deliver_rcu+0x6d/0x9f0
ip_local_deliver_finish+0x278/0x360
ip_local_deliver+0x182/0x2c0
ip_rcv+0xb5/0x1c0
__netif_receive_skb_one_core+0x16e/0x1b0
process_backlog+0x1e3/0x650
__napi_poll+0xa6/0x500
net_rx_action+0x740/0xbb0
__do_softirq+0x183/0x5a4
The buggy address belongs to the object at ffff888485950880
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes inside of
64-byte region [ffff888485950880, ffff8884859508c0)
The buggy address belongs to the physical page:
page:0000000056d1e95e refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888485950700 pfn:0x485950
flags: 0x57ffffc0000800(slab|node=1|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0057ffffc0000800 ffff88810004c640 ffffea00121b8ac0 dead000000000006
raw: ffff888485950700 0000000000200019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888485950780: fa fb fb
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26782</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="41" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="41" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren&apos;t supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26787</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="42" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="42" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
btrfs: dev-replace: properly validate device names
There&apos;s a syzbot report that device name buffers passed to device
replace are not properly checked for string termination which could lead
to a read out of bounds in getname_kernel().
Add a helper that validates both source and target device name buffers.
For devid as the source initialize the buffer to empty string in case
something tries to read it later.
This was originally analyzed and fixed in a different way by Edward Adam
Davis (see links).</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26791</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="43" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="43" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of anonymous device after snapshot creation failure
When creating a snapshot we may do a double free of an anonymous device
in case there&apos;s an error committing the transaction. The second free may
result in freeing an anonymous device number that was allocated by some
other subsystem in the kernel or another btrfs filesystem.
The steps that lead to this:
1) At ioctl.c:create_snapshot() we allocate an anonymous device number
and assign it to pending_snapshot-&gt;anon_dev;
2) Then we call btrfs_commit_transaction() and end up at
transaction.c:create_pending_snapshot();
3) There we call btrfs_get_new_fs_root() and pass it the anonymous device
number stored in pending_snapshot-&gt;anon_dev;
4) btrfs_get_new_fs_root() frees that anonymous device number because
btrfs_lookup_fs_root() returned a root - someone else did a lookup
of the new root already, which could some task doing backref walking;
5) After that some error happens in the transaction commit path, and at
ioctl.c:create_snapshot() we jump to the &apos;fail&apos; label, and after
that we free again the same anonymous device number, which in the
meanwhile may have been reallocated somewhere else, because
pending_snapshot-&gt;anon_dev still has the same value as in step 1.
Recently syzbot ran into this and reported the following trace:
------------[ cut here ]------------
ida_free called for id=51 which is not allocated.
WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525
Modules linked in:
CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525
Code: 10 42 80 3c 28 (...)
RSP: 0018:ffffc90015a67300 EFLAGS: 00010246
RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000
RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000
RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4
R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246
R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246
FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0
Call Trace:
&lt;TASK&gt;
btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346
create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931
btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404
create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306
btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393
btrfs_ioctl+0xa74/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7fca3e67dda9
Code: 28 00 00 00 (...)
RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9
RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658
&lt;/TASK&gt;
Where we get an explicit message where we attempt to free an anonymous
device number that is not currently allocated. It happens in a different
code path from the example below, at btrfs_get_root_ref(), so this change
may not fix the case triggered by sy
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26792</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="44" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="44" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here&apos;s the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth &lt;HASH:3b4a6&gt;]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth &lt;HASH:3b4a 6&gt;]
hci_error_reset+0x4f/0xa4 [bluetooth &lt;HASH:3b4a 6&gt;]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26801</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="45" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="45" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: ip_tunnel: prevent perpetual headroom growth
syzkaller triggered following kasan splat:
BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191
[..]
kasan_report+0xda/0x110 mm/kasan/report.c:588
__skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline]
___skb_get_hash net/core/flow_dissector.c:1791 [inline]
__skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856
skb_get_hash include/linux/skbuff.h:1556 [inline]
ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748
ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592
...
ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
..
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831
ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
...
The splat occurs because skb-&gt;data points past skb-&gt;head allocated area.
This is because neigh layer does:
__skb_pull(skb, skb_network_offset(skb));
... but skb_network_offset() returns a negative offset and __skb_pull()
arg is unsigned. IOW, we skb-&gt;data gets &quot;adjusted&quot; by a huge value.
The negative value is returned because skb-&gt;head and skb-&gt;data distance is
more than 64k and skb-&gt;network_header (u16) has wrapped around.
The bug is in the ip_tunnel infrastructure, which can cause
dev-&gt;needed_headroom to increment ad infinitum.
The syzkaller reproducer consists of packets getting routed via a gre
tunnel, and route of gre encapsulated packets pointing at another (ipip)
tunnel. The ipip encapsulation finds gre0 as next output device.
This results in the following pattern:
1). First packet is to be sent out via gre0.
Route lookup found an output device, ipip0.
2).
ip_tunnel_xmit for gre0 bumps gre0-&gt;needed_headroom based on the future
output device, rt.dev-&gt;needed_headroom (ipip0).
3).
ip output / start_xmit moves skb on to ipip0. which runs the same
code path again (xmit recursion).
4).
Routing step for the post-gre0-encap packet finds gre0 as output device
to use for ipip0 encapsulated packet.
tunl0-&gt;needed_headroom is then incremented based on the (already bumped)
gre0 device headroom.
This repeats for every future packet:
gre0-&gt;needed_headroom gets inflated because previous packets&apos; ipip0 step
incremented rt-&gt;dev (gre0) headroom, and ipip0 incremented because gre0
needed_headroom was increased.
For each subsequent packet, gre/ipip0-&gt;needed_headroom grows until
post-expand-head reallocations result in a skb-&gt;head/data distance of
more than 64k.
Once that happens, skb-&gt;network_header (u16) wraps around when
pskb_expand_head tries to make sure that skb_network_offset() is unchanged
after the headroom expansion/reallocation.
After this skb_network_offset(skb) returns a different (and negative)
result post headroom expansion.
The next trip to neigh layer (or anything else that would __skb_pull the
network header) makes skb-&gt;data point to a memory location outside
skb-&gt;head area.
v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to
prevent perpetual increase instead of dropping the headroom increment
completely.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26804</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="46" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="46" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter
syzbot reported the following uninit-value access issue [1]:
netlink_to_full_skb() creates a new `skb` and puts the `skb-&gt;data`
passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data
size is specified as `len` and passed to skb_put_data(). This `len`
is based on `skb-&gt;end` that is not data offset but buffer offset. The
`skb-&gt;end` contains data and tailroom. Since the tailroom is not
initialized when the new `skb` created, KMSAN detects uninitialized
memory area when copying the data.
This patch resolved this issue by correct the len from `skb-&gt;end` to
`skb-&gt;len`, which is the actual data offset.
BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
copy_to_iter include/linux/uio.h:197 [inline]
simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:532
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:420
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546
skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline]
packet_recvmsg+0xd9c/0x2000 net/packet/af_packet.c:3482
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg net/socket.c:1066 [inline]
sock_read_iter+0x467/0x580 net/socket.c:1136
call_read_iter include/linux/fs.h:2014 [inline]
new_sync_read fs/read_write.c:389 [inline]
vfs_read+0x8f6/0xe00 fs/read_write.c:470
ksys_read+0x20f/0x4c0 fs/read_write.c:613
__do_sys_read fs/read_write.c:623 [inline]
__se_sys_read fs/read_write.c:621 [inline]
__x64_sys_read+0x93/0xd0 fs/read_write.c:621
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was stored to memory at:
skb_put_data include/linux/skbuff.h:2622 [inline]
netlink_to_full_skb net/netlink/af_netlink.c:181 [inline]
__netlink_deliver_tap_skb net/netlink/af_netlink.c:298 [inline]
__netlink_deliver_tap+0x5be/0xc90 net/netlink/af_netlink.c:325
netlink_deliver_tap net/netlink/af_netlink.c:338 [inline]
netlink_deliver_tap_kernel net/netlink/af_netlink.c:347 [inline]
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x10f1/0x1250 net/netlink/af_netlink.c:1368
netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
free_pages_prepare mm/page_alloc.c:1087 [inline]
free_unref_page_prepare+0xb0/0xa40 mm/page_alloc.c:2347
free_unref_page_list+0xeb/0x1100 mm/page_alloc.c:2533
release_pages+0x23d3/0x2410 mm/swap.c:1042
free_pages_and_swap_cache+0xd9/0xf0 mm/swap_state.c:316
tlb_batch_pages
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26805</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="47" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="47" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain
Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER
event is reported, otherwise a stale reference to netdevice remains in
the hook list.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26808</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="48" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="48" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: release elements in clone only from destroy path
Clone already always provides a current view of the lookup table, use it
to destroy the set, otherwise it is possible to destroy elements twice.
This fix requires:
212ed75dc5fb (&quot;netfilter: nf_tables: integrate pipapo into commit protocol&quot;)
which came after:
9827a0e6e23b (&quot;netfilter: nft_set_pipapo: release elements in clone from abort path&quot;).</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26809</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="49" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="49" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate payload size in ipc response
If installing malicious ksmbd-tools, ksmbd.mountd can return invalid ipc
response to ksmbd kernel server. ksmbd should validate payload size of
ipc response from ksmbd.mountd to avoid memory overrun or
slab-out-of-bounds. This patch validate 3 ipc response that has payload.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26811</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector></Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="50" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="50" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Create persistent INTx handler
A vulnerability exists where the eventfd for INTx signaling can be
deconfigured, which unregisters the IRQ handler but still allows
eventfds to be signaled with a NULL context through the SET_IRQS ioctl
or through unmask irqfd if the device interrupt is pending.
Ideally this could be solved with some additional locking; the igate
mutex serializes the ioctl and config space accesses, and the interrupt
handler is unregistered relative to the trigger, but the irqfd path
runs asynchronous to those. The igate mutex cannot be acquired from the
atomic context of the eventfd wake function. Disabling the irqfd
relative to the eventfd registration is potentially incompatible with
existing userspace.
As a result, the solution implemented here moves configuration of the
INTx interrupt handler to track the lifetime of the INTx context object
and irq_type configuration, rather than registration of a particular
trigger eventfd. Synchronization is added between the ioctl path and
eventfd_signal() wrapper such that the eventfd trigger can be
dynamically updated relative to in-flight interrupts or irqfd callbacks.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26812</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="51" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="51" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
vfio/fsl-mc: Block calling interrupt handler without trigger
The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is
initially NULL and may become NULL if the user sets the trigger
eventfd to -1. The interrupt handler itself is guaranteed that
trigger is always valid between request_irq() and free_irq(), but
the loopback testing mechanisms to invoke the handler function
need to test the trigger. The triggering and setting ioctl paths
both make use of igate and are therefore mutually exclusive.
The vfio-fsl-mc driver does not make use of irqfds, nor does it
support any sort of masking operations, therefore unlike vfio-pci
and vfio-platform, the flow can remain essentially unchanged.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26814</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="52" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="52" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
amdkfd: use calloc instead of kzalloc to avoid integer overflow
This uses calloc instead of doing the multiplication which might
overflow.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26817</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="53" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="53" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
cifs: fix underflow in parse_server_interfaces()
In this loop, we step through the buffer and after each item we check
if the size_left is greater than the minimum size we need. However,
the problem is that &quot;bytes_left&quot; is type ssize_t while sizeof() is type
size_t. That means that because of type promotion, the comparison is
done as an unsigned and if we have negative bytes left the loop
continues instead of ending.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26828</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.3</BaseScore>
<Vector>AV:N/AC:L/PR:L/UI:R/S:U/C:N/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="54" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="54" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: ir_toy: fix a memleak in irtoy_tx
When irtoy_command fails, buf should be freed since it is allocated by
irtoy_tx, or there is a memleak.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26829</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="55" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="55" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix a memleak in init_credit_return
When dma_alloc_coherent fails to allocate dd-&gt;cr_base[i].va,
init_credit_return should deallocate dd-&gt;cr_base and
dd-&gt;cr_base[i] that allocated before. Or those resources
would be never freed and a memleak is triggered.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26839</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="56" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="56" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix memory leak in cachefiles_add_cache()
The following memory leak was reported after unbinding /dev/cachefiles:
==================================================================
unreferenced object 0xffff9b674176e3c0 (size 192):
comm &quot;cachefilesd2&quot;, pid 680, jiffies 4294881224
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc ea38a44b):
[&lt;ffffffff8eb8a1a5&gt;] kmem_cache_alloc+0x2d5/0x370
[&lt;ffffffff8e917f86&gt;] prepare_creds+0x26/0x2e0
[&lt;ffffffffc002eeef&gt;] cachefiles_determine_cache_security+0x1f/0x120
[&lt;ffffffffc00243ec&gt;] cachefiles_add_cache+0x13c/0x3a0
[&lt;ffffffffc0025216&gt;] cachefiles_daemon_write+0x146/0x1c0
[&lt;ffffffff8ebc4a3b&gt;] vfs_write+0xcb/0x520
[&lt;ffffffff8ebc5069&gt;] ksys_write+0x69/0xf0
[&lt;ffffffff8f6d4662&gt;] do_syscall_64+0x72/0x140
[&lt;ffffffff8f8000aa&gt;] entry_SYSCALL_64_after_hwframe+0x6e/0x76
==================================================================
Put the reference count of cache_cred in cachefiles_daemon_unbind() to
fix the problem. And also put cache_cred in cachefiles_add_cache() error
branch to avoid memory leaks.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26840</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="57" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="57" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
efi: runtime: Fix potential overflow of soft-reserved region size
md_size will have been narrowed if we have &gt;= 4GB worth of pages in a
soft-reserved region.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26843</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="58" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="58" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing &apos;left over IDs&apos;. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26846</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="59" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="59" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: avoid possible UAF in ip6_route_mpath_notify()
syzbot found another use-after-free in ip6_route_mpath_notify() [1]
Commit f7225172f25a (&quot;net/ipv6: prevent use after free in
ip6_route_mpath_notify&quot;) was not able to fix the root cause.
We need to defer the fib6_info_release() calls after
ip6_route_mpath_notify(), in the cleanup phase.
[1]
BUG: KASAN: slab-use-after-free in rt6_fill_node+0x1460/0x1ac0
Read of size 4 at addr ffff88809a07fc64 by task syz-executor.2/23037
CPU: 0 PID: 23037 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-01035-gea7f3cfaa588 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x167/0x540 mm/kasan/report.c:488
kasan_report+0x142/0x180 mm/kasan/report.c:601
rt6_fill_node+0x1460/0x1ac0
inet6_rt_notify+0x13b/0x290 net/ipv6/route.c:6184
ip6_route_mpath_notify net/ipv6/route.c:5198 [inline]
ip6_route_multipath_add net/ipv6/route.c:5404 [inline]
inet6_rtm_newroute+0x1d0f/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f73dd87dda9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f73de6550c8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f73dd9ac050 RCX: 00007f73dd87dda9
RDX: 0000000000000000 RSI: 0000000020000140 RDI: 0000000000000005
RBP: 00007f73dd8ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000006e R14: 00007f73dd9ac050 R15: 00007ffdbdeb7858
&lt;/TASK&gt;
Allocated by task 23037:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:372 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:389
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3981 [inline]
__kmalloc+0x22e/0x490 mm/slub.c:3994
kmalloc include/linux/slab.h:594 [inline]
kzalloc include/linux/slab.h:711 [inline]
fib6_info_alloc+0x2e/0xf0 net/ipv6/ip6_fib.c:155
ip6_route_info_create+0x445/0x12b0 net/ipv6/route.c:3758
ip6_route_multipath_add net/ipv6/route.c:5298 [inline]
inet6_rtm_newroute+0x744/0x2300 net/ipv6/route.c:5517
rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6597
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
Freed by task 16:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x4e/0x60 mm/kasan/generic.c:640
poison_slab_object+0xa6/0xe0 m
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26852</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.8</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="60" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="60" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink()
The function ice_bridge_setlink() may encounter a NULL pointer dereference
if nlmsg_find_attr() returns NULL and br_spec is dereferenced subsequently
in nla_for_each_nested(). To address this issue, add a check to ensure that
br_spec is not NULL before proceeding with the nested attribute iteration.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26855</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="61" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="61" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/bnx2x: Prevent access to a freed page in page_pool
Fix race condition leading to system crash during EEH error handling
During EEH error recovery, the bnx2x driver&apos;s transmit timeout logic
could cause a race condition when handling reset tasks. The
bnx2x_tx_timeout() schedules reset tasks via bnx2x_sp_rtnl_task(),
which ultimately leads to bnx2x_nic_unload(). In bnx2x_nic_unload()
SGEs are freed using bnx2x_free_rx_sge_range(). However, this could
overlap with the EEH driver&apos;s attempt to reset the device using
bnx2x_io_slot_reset(), which also tries to free SGEs. This race
condition can result in system crashes due to accessing freed memory
locations in bnx2x_free_rx_sge()
799 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
800 struct bnx2x_fastpath *fp, u16 index)
801 {
802 struct sw_rx_page *sw_buf = &amp;fp-&gt;rx_page_ring[index];
803 struct page *page = sw_buf-&gt;page;
....
where sw_buf was set to NULL after the call to dma_unmap_page()
by the preceding thread.
EEH: Beginning: &apos;slot_reset&apos;
PCI 0011:01:00.0#10000: EEH: Invoking bnx2x-&gt;slot_reset()
bnx2x: [bnx2x_io_slot_reset:14228(eth1)]IO slot reset initializing...
bnx2x 0011:01:00.0: enabling device (0140 -&gt; 0142)
bnx2x: [bnx2x_io_slot_reset:14244(eth1)]IO slot reset --&gt; driver unload
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc0080000025065fc
Oops: Kernel access of bad area, sig: 11 [#1]
.....
Call Trace:
[c000000003c67a20] [c00800000250658c] bnx2x_io_slot_reset+0x204/0x610 [bnx2x] (unreliable)
[c000000003c67af0] [c0000000000518a8] eeh_report_reset+0xb8/0xf0
[c000000003c67b60] [c000000000052130] eeh_pe_report+0x180/0x550
[c000000003c67c70] [c00000000005318c] eeh_handle_normal_event+0x84c/0xa60
[c000000003c67d50] [c000000000053a84] eeh_event_handler+0xf4/0x170
[c000000003c67da0] [c000000000194c58] kthread+0x1c8/0x1d0
[c000000003c67e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64
To solve this issue, we need to verify page pool allocations before
freeing.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26859</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="62" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="62" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
packet: annotate data-races around ignore_outgoing
ignore_outgoing is read locklessly from dev_queue_xmit_nit()
and packet_getsockopt()
Add appropriate READ_ONCE()/WRITE_ONCE() annotations.
syzbot reported:
BUG: KCSAN: data-race in dev_queue_xmit_nit / packet_setsockopt
write to 0xffff888107804542 of 1 bytes by task 22618 on cpu 0:
packet_setsockopt+0xd83/0xfd0 net/packet/af_packet.c:4003
do_sock_setsockopt net/socket.c:2311 [inline]
__sys_setsockopt+0x1d8/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2340
do_syscall_64+0xd3/0x1d0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
read to 0xffff888107804542 of 1 bytes by task 27 on cpu 1:
dev_queue_xmit_nit+0x82/0x620 net/core/dev.c:2248
xmit_one net/core/dev.c:3527 [inline]
dev_hard_start_xmit+0xcc/0x3f0 net/core/dev.c:3547
__dev_queue_xmit+0xf24/0x1dd0 net/core/dev.c:4335
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
batadv_send_skb_packet+0x264/0x300 net/batman-adv/send.c:108
batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127
batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:392 [inline]
batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:420 [inline]
batadv_iv_send_outstanding_bat_ogm_packet+0x3f0/0x4b0 net/batman-adv/bat_iv_ogm.c:1700
process_one_work kernel/workqueue.c:3254 [inline]
process_scheduled_works+0x465/0x990 kernel/workqueue.c:3335
worker_thread+0x526/0x730 kernel/workqueue.c:3416
kthread+0x1d1/0x210 kernel/kthread.c:388
ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
value changed: 0x00 -&gt; 0x01
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 27 Comm: kworker/u8:1 Tainted: G W 6.8.0-syzkaller-08073-g480e035fc4c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26862</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="63" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="63" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
hsr: Fix uninit-value access in hsr_get_node()
KMSAN reported the following uninit-value access issue [1]:
=====================================================
BUG: KMSAN: uninit-value in hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
fill_frame_info net/hsr/hsr_forward.c:577 [inline]
hsr_forward_skb+0xe12/0x30e0 net/hsr/hsr_forward.c:615
hsr_dev_xmit+0x1a1/0x270 net/hsr/hsr_device.c:223
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560
__alloc_skb+0x318/0x740 net/core/skbuff.c:651
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787
packet_alloc_skb net/packet/af_packet.c:2936 [inline]
packet_snd net/packet/af_packet.c:3030 [inline]
packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
CPU: 1 PID: 5033 Comm: syz-executor334 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
=====================================================
If the packet type ID field in the Ethernet header is either ETH_P_PRP or
ETH_P_HSR, but it is not followed by an HSR tag, hsr_get_skb_sequence_nr()
reads an invalid value as a sequence number. This causes the above issue.
This patch fixes the issue by returning NULL if the Ethernet header is not
followed by an HSR tag.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26863</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="64" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="64" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
rds: tcp: Fix use-after-free of net in reqsk_timer_handler().
syzkaller reported a warning of netns tracker [0] followed by KASAN
splat [1] and another ref tracker warning [1].
syzkaller could not find a repro, but in the log, the only suspicious
sequence was as follows:
18:26:22 executing program 1:
r0 = socket$inet6_mptcp(0xa, 0x1, 0x106)
...
connect$inet6(r0, &amp;(0x7f0000000080)={0xa, 0x4001, 0x0, @loopback}, 0x1c) (async)
The notable thing here is 0x4001 in connect(), which is RDS_TCP_PORT.
So, the scenario would be:
1. unshare(CLONE_NEWNET) creates a per netns tcp listener in
rds_tcp_listen_init().
2. syz-executor connect()s to it and creates a reqsk.
3. syz-executor exit()s immediately.
4. netns is dismantled. [0]
5. reqsk timer is fired, and UAF happens while freeing reqsk. [1]
6. listener is freed after RCU grace period. [2]
Basically, reqsk assumes that the listener guarantees netns safety
until all reqsk timers are expired by holding the listener&apos;s refcount.
However, this was not the case for kernel sockets.
Commit 740ea3c4a0b2 (&quot;tcp: Clean up kernel listener&apos;s reqsk in
inet_twsk_purge()&quot;) fixed this issue only for per-netns ehash.
Let&apos;s apply the same fix for the global ehash.
[0]:
ref_tracker: net notrefcnt@0000000065449cc3 has 1/1 users at
sk_alloc (./include/net/net_namespace.h:337 net/core/sock.c:2146)
inet6_create (net/ipv6/af_inet6.c:192 net/ipv6/af_inet6.c:119)
__sock_create (net/socket.c:1572)
rds_tcp_listen_init (net/rds/tcp_listen.c:279)
rds_tcp_init_net (net/rds/tcp.c:577)
ops_init (net/core/net_namespace.c:137)
setup_net (net/core/net_namespace.c:340)
copy_net_ns (net/core/net_namespace.c:497)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_namespaces (kernel/nsproxy.c:228 (discriminator 4))
ksys_unshare (kernel/fork.c:3429)
__x64_sys_unshare (kernel/fork.c:3496)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
...
WARNING: CPU: 0 PID: 27 at lib/ref_tracker.c:179 ref_tracker_dir_exit (lib/ref_tracker.c:179)
[1]:
BUG: KASAN: slab-use-after-free in inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966)
Read of size 8 at addr ffff88801b370400 by task swapper/0/0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
&lt;IRQ&gt;
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1))
print_report (mm/kasan/report.c:378 mm/kasan/report.c:488)
kasan_report (mm/kasan/report.c:603)
inet_csk_reqsk_queue_drop (./include/net/inet_hashtables.h:180 net/ipv4/inet_connection_sock.c:952 net/ipv4/inet_connection_sock.c:966)
reqsk_timer_handler (net/ipv4/inet_connection_sock.c:979 net/ipv4/inet_connection_sock.c:1092)
call_timer_fn (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/timer.h:127 kernel/time/timer.c:1701)
__run_timers.part.0 (kernel/time/timer.c:1752 kernel/time/timer.c:2038)
run_timer_softirq (kernel/time/timer.c:2053)
__do_softirq (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/irq.h:142 kernel/softirq.c:554)
irq_exit_rcu (kernel/softirq.c:427 kernel/softirq.c:632 kernel/softirq.c:644)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1076 (discriminator 14))
&lt;/IRQ&gt;
Allocated by task 258 on cpu 0 at 83.612050s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
__kasan_slab_alloc (mm/kasan/common.c:343)
kmem_cache_alloc (mm/slub.c:3813 mm/slub.c:3860 mm/slub.c:3867)
copy_net_ns (./include/linux/slab.h:701 net/core/net_namespace.c:421 net/core/net_namespace.c:480)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_name
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26865</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.0</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="65" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="65" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to truncate meta inode pages forcely
Below race case can cause data corruption:
Thread A GC thread
- gc_data_segment
- ra_data_block
- locked meta_inode page
- f2fs_inplace_write_data
- invalidate_mapping_pages
: fail to invalidate meta_inode page
due to lock failure or dirty|writeback
status
- f2fs_submit_page_bio
: write last dirty data to old blkaddr
- move_data_block
- load old data from meta_inode page
- f2fs_submit_page_write
: write old data to new blkaddr
Because invalidate_mapping_pages() will skip invalidating page which
has unclear status including locked, dirty, writeback and so on, so
we need to use truncate_inode_pages_range() instead of
invalidate_mapping_pages() to make sure meta_inode page will be dropped.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26869</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="66" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="66" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102
A call to listxattr() with a buffer size = 0 returns the actual
size of the buffer needed for a subsequent call. When size &gt; 0,
nfs4_listxattr() does not return an error because either
generic_listxattr() or nfs4_listxattr_nfs4_label() consumes
exactly all the bytes then size is 0 when calling
nfs4_listxattr_nfs4_user() which then triggers the following
kernel BUG:
[ 99.403778] kernel BUG at mm/usercopy.c:102!
[ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1
[ 99.415827] Call trace:
[ 99.415985] usercopy_abort+0x70/0xa0
[ 99.416227] __check_heap_object+0x134/0x158
[ 99.416505] check_heap_object+0x150/0x188
[ 99.416696] __check_object_size.part.0+0x78/0x168
[ 99.416886] __check_object_size+0x28/0x40
[ 99.417078] listxattr+0x8c/0x120
[ 99.417252] path_listxattr+0x78/0xe0
[ 99.417476] __arm64_sys_listxattr+0x28/0x40
[ 99.417723] invoke_syscall+0x78/0x100
[ 99.417929] el0_svc_common.constprop.0+0x48/0xf0
[ 99.418186] do_el0_svc+0x24/0x38
[ 99.418376] el0_svc+0x3c/0x110
[ 99.418554] el0t_64_sync_handler+0x120/0x130
[ 99.418788] el0t_64_sync+0x194/0x198
[ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000)
Issue is reproduced when generic_listxattr() returns &apos;system.nfs4_acl&apos;,
thus calling lisxattr() with size = 16 will trigger the bug.
Add check on nfs4_listxattr() to return ERANGE error when it is
called with size &gt; 0 and the return value is greater than size.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26870</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="67" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="67" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Do not register event handler until srpt device is fully setup
Upon rare occasions, KASAN reports a use-after-free Write
in srpt_refresh_port().
This seems to be because an event handler is registered before the
srpt device is fully setup and a race condition upon error may leave a
partially setup event handler in place.
Instead, only register the event handler after srpt device initialization
is complete.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26872</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="68" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="68" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: pvrusb2: fix uaf in pvr2_context_set_notify
[Syzbot reported]
BUG: KASAN: slab-use-after-free in pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35
Read of size 4 at addr ffff888113aeb0d8 by task kworker/1:1/26
CPU: 1 PID: 26 Comm: kworker/1:1 Not tainted 6.8.0-rc1-syzkaller-00046-gf1a27f081c1f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: usb_hub_wq hub_event
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc4/0x620 mm/kasan/report.c:488
kasan_report+0xda/0x110 mm/kasan/report.c:601
pvr2_context_set_notify+0x2c4/0x310 drivers/media/usb/pvrusb2/pvrusb2-context.c:35
pvr2_context_notify drivers/media/usb/pvrusb2/pvrusb2-context.c:95 [inline]
pvr2_context_disconnect+0x94/0xb0 drivers/media/usb/pvrusb2/pvrusb2-context.c:272
Freed by task 906:
kasan_save_stack+0x33/0x50 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3f/0x60 mm/kasan/generic.c:640
poison_slab_object mm/kasan/common.c:241 [inline]
__kasan_slab_free+0x106/0x1b0 mm/kasan/common.c:257
kasan_slab_free include/linux/kasan.h:184 [inline]
slab_free_hook mm/slub.c:2121 [inline]
slab_free mm/slub.c:4299 [inline]
kfree+0x105/0x340 mm/slub.c:4409
pvr2_context_check drivers/media/usb/pvrusb2/pvrusb2-context.c:137 [inline]
pvr2_context_thread_func+0x69d/0x960 drivers/media/usb/pvrusb2/pvrusb2-context.c:158
[Analyze]
Task A set disconnect_flag = !0, which resulted in Task B&apos;s condition being met
and releasing mp, leading to this issue.
[Fix]
Place the disconnect_flag assignment operation after all code in pvr2_context_disconnect()
to avoid this issue.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26875</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>6.4</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="69" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="69" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&amp;dquots[cnt]-&gt;dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode&apos;s quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let&apos;s fix it by using a temporary pointer to avoid this issue.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26878</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="70" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="70" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
dm: call the resume method on internal suspend
There is this reported crash when experimenting with the lvm2 testsuite.
The list corruption is caused by the fact that the postsuspend and resume
methods were not paired correctly; there were two consecutive calls to the
origin_postsuspend function. The second call attempts to remove the
&quot;hash_list&quot; entry from a list, while it was already removed by the first
call.
Fix __dm_internal_resume so that it calls the preresume and resume
methods of the table&apos;s targets.
If a preresume method of some target fails, we are in a tricky situation.
We can&apos;t return an error because dm_internal_resume isn&apos;t supposed to
return errors. We can&apos;t return success, because then the &quot;resume&quot; and
&quot;postsuspend&quot; methods would not be paired correctly. So, we set the
DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace
tools, but it won&apos;t cause a kernel crash.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:56!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0
&lt;snip&gt;
RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282
RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff
RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058
R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001
R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0
FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0
Call Trace:
&lt;TASK&gt;
? die+0x2d/0x80
? do_trap+0xeb/0xf0
? __list_del_entry_valid_or_report+0x77/0xc0
? do_error_trap+0x60/0x80
? __list_del_entry_valid_or_report+0x77/0xc0
? exc_invalid_op+0x49/0x60
? __list_del_entry_valid_or_report+0x77/0xc0
? asm_exc_invalid_op+0x16/0x20
? table_deps+0x1b0/0x1b0 [dm_mod]
? __list_del_entry_valid_or_report+0x77/0xc0
origin_postsuspend+0x1a/0x50 [dm_snapshot]
dm_table_postsuspend_targets+0x34/0x50 [dm_mod]
dm_suspend+0xd8/0xf0 [dm_mod]
dev_suspend+0x1f2/0x2f0 [dm_mod]
? table_deps+0x1b0/0x1b0 [dm_mod]
ctl_ioctl+0x300/0x5f0 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x10 [dm_mod]
__x64_compat_sys_ioctl+0x104/0x170
do_syscall_64+0x184/0x1b0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0xf7e6aead
&lt;snip&gt;
---[ end trace 0000000000000000 ]---</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26880</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="71" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="71" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix double free in SMC transport cleanup path
When the generic SCMI code tears down a channel, it calls the chan_free
callback function, defined by each transport. Since multiple protocols
might share the same transport_info member, chan_free() might want to
clean up the same member multiple times within the given SCMI transport
implementation. In this case, it is SMC transport. This will lead to a NULL
pointer dereference at the second time:
| scmi_protocol scmi_dev.1: Enabled polling mode TX channel - prot_id:16
| arm-scmi firmware:scmi: SCMI Notifications - Core Enabled.
| arm-scmi firmware:scmi: unable to communicate with SCMI
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000096000004
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| Data abort info:
| ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
| CM = 0, WnR = 0, TnD = 0, TagAccess = 0
| GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881ef8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 4 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-00124-g455ef3d016c9-dirty #793
| Hardware name: FVP Base RevC (DT)
| pstate: 61400009 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
| pc : smc_chan_free+0x3c/0x6c
| lr : smc_chan_free+0x3c/0x6c
| Call trace:
| smc_chan_free+0x3c/0x6c
| idr_for_each+0x68/0xf8
| scmi_cleanup_channels.isra.0+0x2c/0x58
| scmi_probe+0x434/0x734
| platform_probe+0x68/0xd8
| really_probe+0x110/0x27c
| __driver_probe_device+0x78/0x12c
| driver_probe_device+0x3c/0x118
| __driver_attach+0x74/0x128
| bus_for_each_dev+0x78/0xe0
| driver_attach+0x24/0x30
| bus_add_driver+0xe4/0x1e8
| driver_register+0x60/0x128
| __platform_driver_register+0x28/0x34
| scmi_driver_init+0x84/0xc0
| do_one_initcall+0x78/0x33c
| kernel_init_freeable+0x2b8/0x51c
| kernel_init+0x24/0x130
| ret_from_fork+0x10/0x20
| Code: f0004701 910a0021 aa1403e5 97b91c70 (b9400280)
| ---[ end trace 0000000000000000 ]---
Simply check for the struct pointer being NULL before trying to access
its members, to avoid this situation.
This was found when a transport doesn&apos;t really work (for instance no SMC
service), the probe routines then tries to clean up, and triggers a crash.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26893</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="72" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="72" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: prevent use-after-free on vif when cleaning up all interfaces
wilc_netdev_cleanup currently triggers a KASAN warning, which can be
observed on interface registration error path, or simply by
removing the module/unbinding device from driver:
echo spi0.1 &gt; /sys/bus/spi/drivers/wilc1000_spi/unbind
==================================================================
BUG: KASAN: slab-use-after-free in wilc_netdev_cleanup+0x508/0x5cc
Read of size 4 at addr c54d1ce8 by task sh/86
CPU: 0 PID: 86 Comm: sh Not tainted 6.8.0-rc1+ #117
Hardware name: Atmel SAMA5
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x34/0x58
dump_stack_lvl from print_report+0x154/0x500
print_report from kasan_report+0xac/0xd8
kasan_report from wilc_netdev_cleanup+0x508/0x5cc
wilc_netdev_cleanup from wilc_bus_remove+0xc8/0xec
wilc_bus_remove from spi_remove+0x8c/0xac
spi_remove from device_release_driver_internal+0x434/0x5f8
device_release_driver_internal from unbind_store+0xbc/0x108
unbind_store from kernfs_fop_write_iter+0x398/0x584
kernfs_fop_write_iter from vfs_write+0x728/0xf88
vfs_write from ksys_write+0x110/0x1e4
ksys_write from ret_fast_syscall+0x0/0x1c
[...]
Allocated by task 1:
kasan_save_track+0x30/0x5c
__kasan_kmalloc+0x8c/0x94
__kmalloc_node+0x1cc/0x3e4
kvmalloc_node+0x48/0x180
alloc_netdev_mqs+0x68/0x11dc
alloc_etherdev_mqs+0x28/0x34
wilc_netdev_ifc_init+0x34/0x8ec
wilc_cfg80211_init+0x690/0x910
wilc_bus_probe+0xe0/0x4a0
spi_probe+0x158/0x1b0
really_probe+0x270/0xdf4
__driver_probe_device+0x1dc/0x580
driver_probe_device+0x60/0x140
__driver_attach+0x228/0x5d4
bus_for_each_dev+0x13c/0x1a8
bus_add_driver+0x2a0/0x608
driver_register+0x24c/0x578
do_one_initcall+0x180/0x310
kernel_init_freeable+0x424/0x484
kernel_init+0x20/0x148
ret_from_fork+0x14/0x28
Freed by task 86:
kasan_save_track+0x30/0x5c
kasan_save_free_info+0x38/0x58
__kasan_slab_free+0xe4/0x140
kfree+0xb0/0x238
device_release+0xc0/0x2a8
kobject_put+0x1d4/0x46c
netdev_run_todo+0x8fc/0x11d0
wilc_netdev_cleanup+0x1e4/0x5cc
wilc_bus_remove+0xc8/0xec
spi_remove+0x8c/0xac
device_release_driver_internal+0x434/0x5f8
unbind_store+0xbc/0x108
kernfs_fop_write_iter+0x398/0x584
vfs_write+0x728/0xf88
ksys_write+0x110/0x1e4
ret_fast_syscall+0x0/0x1c
[...]
David Mosberger-Tan initial investigation [1] showed that this
use-after-free is due to netdevice unregistration during vif list
traversal. When unregistering a net device, since the needs_free_netdev has
been set to true during registration, the netdevice object is also freed,
and as a consequence, the corresponding vif object too, since it is
attached to it as private netdevice data. The next occurrence of the loop
then tries to access freed vif pointer to the list to move forward in the
list.
Fix this use-after-free thanks to two mechanisms:
- navigate in the list with list_for_each_entry_safe, which allows to
safely modify the list as we go through each element. For each element,
remove it from the list with list_del_rcu
- make sure to wait for RCU grace period end after each vif removal to make
sure it is safe to free the corresponding vif too (through
unregister_netdev)
Since we are in a RCU &quot;modifier&quot; path (not a &quot;reader&quot; path), and because
such path is expected not to be concurrent to any other modifier (we are
using the vif_mutex lock), we do not need to use RCU list API, that&apos;s why
we can benefit from list_for_each_entry_safe.
[1] https://lore.kernel.org/linux-wireless/ab077dbe58b1ea5de0a3b2ca21f275a07af967d2.camel@egauge.net/</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26895</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="73" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="73" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: wfx: fix memory leak when starting AP
Kmemleak reported this error:
unreferenced object 0xd73d1180 (size 184):
comm &quot;wpa_supplicant&quot;, pid 1559, jiffies 13006305 (age 964.245s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................
backtrace:
[&lt;5ca11420&gt;] kmem_cache_alloc+0x20c/0x5ac
[&lt;127bdd74&gt;] __alloc_skb+0x144/0x170
[&lt;fb8a5e38&gt;] __netdev_alloc_skb+0x50/0x180
[&lt;0f9fa1d5&gt;] __ieee80211_beacon_get+0x290/0x4d4 [mac80211]
[&lt;7accd02d&gt;] ieee80211_beacon_get_tim+0x54/0x18c [mac80211]
[&lt;41e25cc3&gt;] wfx_start_ap+0xc8/0x234 [wfx]
[&lt;93a70356&gt;] ieee80211_start_ap+0x404/0x6b4 [mac80211]
[&lt;a4a661cd&gt;] nl80211_start_ap+0x76c/0x9e0 [cfg80211]
[&lt;47bd8b68&gt;] genl_rcv_msg+0x198/0x378
[&lt;453ef796&gt;] netlink_rcv_skb+0xd0/0x130
[&lt;6b7c977a&gt;] genl_rcv+0x34/0x44
[&lt;66b2d04d&gt;] netlink_unicast+0x1b4/0x258
[&lt;f965b9b6&gt;] netlink_sendmsg+0x1e8/0x428
[&lt;aadb8231&gt;] ____sys_sendmsg+0x1e0/0x274
[&lt;d2b5212d&gt;] ___sys_sendmsg+0x80/0xb4
[&lt;69954f45&gt;] __sys_sendmsg+0x64/0xa8
unreferenced object 0xce087000 (size 1024):
comm &quot;wpa_supplicant&quot;, pid 1559, jiffies 13006305 (age 964.246s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............
backtrace:
[&lt;9a993714&gt;] __kmalloc_track_caller+0x230/0x600
[&lt;f83ea192&gt;] kmalloc_reserve.constprop.0+0x30/0x74
[&lt;a2c61343&gt;] __alloc_skb+0xa0/0x170
[&lt;fb8a5e38&gt;] __netdev_alloc_skb+0x50/0x180
[&lt;0f9fa1d5&gt;] __ieee80211_beacon_get+0x290/0x4d4 [mac80211]
[&lt;7accd02d&gt;] ieee80211_beacon_get_tim+0x54/0x18c [mac80211]
[&lt;41e25cc3&gt;] wfx_start_ap+0xc8/0x234 [wfx]
[&lt;93a70356&gt;] ieee80211_start_ap+0x404/0x6b4 [mac80211]
[&lt;a4a661cd&gt;] nl80211_start_ap+0x76c/0x9e0 [cfg80211]
[&lt;47bd8b68&gt;] genl_rcv_msg+0x198/0x378
[&lt;453ef796&gt;] netlink_rcv_skb+0xd0/0x130
[&lt;6b7c977a&gt;] genl_rcv+0x34/0x44
[&lt;66b2d04d&gt;] netlink_unicast+0x1b4/0x258
[&lt;f965b9b6&gt;] netlink_sendmsg+0x1e8/0x428
[&lt;aadb8231&gt;] ____sys_sendmsg+0x1e0/0x274
[&lt;d2b5212d&gt;] ___sys_sendmsg+0x80/0xb4
However, since the kernel is build optimized, it seems the stack is not
accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue
is obvious in this function: memory allocated by ieee80211_beacon_get()
is never released. Fixing this leak makes kmemleak happy.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26896</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.3</BaseScore>
<Vector>AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="74" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="74" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete
The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data
structures have been fully initialised by the time it runs. However, because of
the order in which things are initialised, this is not guaranteed to be the
case, because the device is exposed to the USB subsystem before the ath9k driver
initialisation is completed.
We already committed a partial fix for this in commit:
8b3046abc99e (&quot;ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()&quot;)
However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event
tasklet, pairing it with an &quot;initialisation complete&quot; bit in the TX struct. It
seems syzbot managed to trigger the race for one of the other commands as well,
so let&apos;s just move the existing synchronisation bit to cover the whole
tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside
ath9k_tx_init()).</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26897</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="75" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="75" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
scsi: Revert &quot;scsi: fcoe: Fix potential deadlock on &amp;fip-&gt;ctlr_lock&quot;
This reverts commit 1a1975551943f681772720f639ff42fbaa746212.
This commit causes interrupts to be lost for FCoE devices, since it changed
sping locks from &quot;bh&quot; to &quot;irqsave&quot;.
Instead, a work queue should be used, and will be addressed in a separate
commit.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26917</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="76" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="76" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
inet: inet_defrag: prevent sk release while still in use
ip_local_out() and other functions can pass skb-&gt;sk as function argument.
If the skb is a fragment and reassembly happens before such function call
returns, the sk must not be released.
This affects skb fragments reassembled via netfilter or similar
modules, e.g. openvswitch or ct_act.c, when run as part of tx pipeline.
Eric Dumazet made an initial analysis of this bug. Quoting Eric:
Calling ip_defrag() in output path is also implying skb_orphan(),
which is buggy because output path relies on sk not disappearing.
A relevant old patch about the issue was :
8282f27449bf (&quot;inet: frag: Always orphan skbs inside ip_defrag()&quot;)
[..]
net/ipv4/ip_output.c depends on skb-&gt;sk being set, and probably to an
inet socket, not an arbitrary one.
If we orphan the packet in ipvlan, then downstream things like FQ
packet scheduler will not work properly.
We need to change ip_defrag() to only use skb_orphan() when really
needed, ie whenever frag_list is going to be used.
Eric suggested to stash sk in fragment queue and made an initial patch.
However there is a problem with this:
If skb is refragmented again right after, ip_do_fragment() will copy
head-&gt;sk to the new fragments, and sets up destructor to sock_wfree.
IOW, we have no choice but to fix up sk_wmem accouting to reflect the
fully reassembled skb, else wmem will underflow.
This change moves the orphan down into the core, to last possible moment.
As ip_defrag_offset is aliased with sk_buff-&gt;sk member, we must move the
offset into the FRAG_CB, else skb-&gt;sk gets clobbered.
This allows to delay the orphaning long enough to learn if the skb has
to be queued or if the skb is completing the reasm queue.
In the former case, things work as before, skb is orphaned. This is
safe because skb gets queued/stolen and won&apos;t continue past reasm engine.
In the latter case, we will steal the skb-&gt;sk reference, reattach it to
the head skb, and fix up wmem accouting when inet_frag inflates truesize.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26921</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.8</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="77" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="77" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: validate the parameters of bo mapping operations more clearly
Verify the parameters of
amdgpu_vm_bo_(map/replace_map/clearing_mappings) in one common place.</Note>
</Notes>
<ReleaseDate>2024-05-17</ReleaseDate>
<CVE>CVE-2024-26922</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-17</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1622</URL>
</Remediation>
</Remediations>
</Vulnerability>
</cvrfdoc>